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METHOD OF SYMMETRICAL CO-ORDINATES APPLIED
TO THE SOLUTION OF POLYPHASE NETWORKS

BY C. L. FORTESCUE

ABSTRACT OF PAPER

In the introduction a general discussion of unsymmetrical
systems of co-planar vectors leads to the conclusion that they
may be represented by symmetrical systems of the same number
of vectors, the number of symmetrical systems required to define
the given system being equal to its degrees of freedom. A few
trigonometrical theorems which are to be used in the paper are
called, to mind. The paper is subdivided into three parts, an
abstract of which follows. It is recommended that only that
part of Part I up to formula (33) and the portion dealing with
star-delta transformations be read before proceeding with Part II.

Part 1 deals with the resolution of unsymmetrical groups of
numbers into symmetrical groups. These numbers may repre-
sent rotating vectors of systems of operators. A new operator
termed the sequence operator is introduced which simplifies the
manipulation. Formulas are derived for three-phase circuits.
Star-delta transformations for symmetrical co-ordinates are given
and expressions for power deduced. A short discussion of har-
monics in three-phase systems is given.

Part II deals with the practical application of this method to
symmetrical rotating machines operating on unsymmetrical
circuits. General formulas are derived and such special cases,
as the single-phase induction motor, synchrorous motor-genera-
tor, phase converters of various types, are discussed.

INTRODUCTION

N THE latter part of 1913 the writer had occasion to investi-
gate mathematically the operation of induction motors under
unbalanced conditions. The work was first carried out, having
particularly in mind the determination of the operating char-
acteristics of phase converters which may be considered as a
particular case of unbalanced motor operation, but the scope
of the subject broadened out very quickly and the writer under-
took this paper in the belief that the subject would be of interest
to many. '
The most striking thing about the results obtained was their
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symmetry; the solution always reduced to the sum of two or
more symmetrical solutions. The writer was then led to in-
quire if there were no general principles by which the solution
of unbalanced polyphase systems could be reduced to the solu-
tion of two or more balanced cases. The present paper is an
endeavor to present a general method of solving polyphase
network which has peculiar advantages when applied to the
type of polyphase networks which include rotating machines.

In physical investigations success depends often on a happy
choice of co-ordinates. An electrical network being a dynamic
system should also be aided by the selection of a suitable system
of co-ord nates. The co-ordinates of a system are quantities
which when given, completely define the system. Thus a system
of three co-planar congruent vectors are defined when their
magnitude and their angular position with respect to some fixed
direction are given. Such a system may be said to have six
degrees of freedom, for each vector may vary in magnitude and
phase position without regard to the others. If, however, we
impose the condition that the vector sum of these vectors shall
be zero, we find that with the direction of one vector given,
the other two vectors are completely defined when their magni-
tude alone is given, the system has therefore lost two degrees
of freedom by imposing the above condition which in dynamical
theory is termed a ‘‘constraint’”’. If we impose a further con-
dition that the vectors be symmetrically disposed about their
common origin this system will now have but two degrees of
freedom.

It is evident from the above definition that a system of =
coplanar congruent vectors may have 2 n degrees of freedom and
that a system of n symmetrically spaced vectors of equal mag-
nitude has but two degrees of freedom. It should be possible
then by a simple transformation to define the system of =
arbitrary congruent vectors by n other systems of congruent
vectors which arc symmetrical and have a common point. The
n symmetr cal svstems so obtained arc the symmetrical co-
ordinates of the given system of vectors and completely define
it.

This method of representing polyphase systems has been
employed in the past to a limited extent, but up to the present
time there has been as far as the author is aware no systematic
presentation of the method. The writer hopes by this paper to
interest others in the application of the method, which will bhe
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found to be a valuable instrument for the solution of certain
classes of polyphase networks.

In dealing with alternating currents in this paper, use is
made of the complex variable which in its most general form
may be represented as a vector of variable length rotating about
a given point at variable angular velocity or better as the re-
sultant of a number of vectors each of constant length rotating
at different angular velocities in the same direction about a
given point. This vector is represented in the text by I, E,
etc., and the conjugate vector which rotates at the same speed
in the opposite direction is represented by I, E, etc. The effec-
tive value of the vector is represented by the symbol without
the distinguishing mark as I, E, etc. The impedances Z,, Z,

d
“dt
and the characteristics of the circuit; these characteristics are
constants only when there is no physical motion. It will there-
fore be necessary to carefully distinguish between Z, I, and
I, Z, when Z, has 'the form of a differential operator. In the
first case a differential operation is carried out on the time
variable I, in the second case the differential operator is merely
multiplied by I,.

The most general expression for a simple harmonic quantity
e is

Zaw, etc., are generally functions of the operator, D =

e = A cos pt — B sin pt

in exponential form this becomes

e = A+Jj8B eI _A_T___]__ée—jﬂ
2 2

(4 + j B) ei#'represents a vector of length vV A2 + B? rotating
in the positive direction with angular velocity p while (4 — j B)
e~i? is the conjugate vector rotating at the same angular
velocity in the opposite direction. Since e7#' is equal to
cos pt+j sin pt, the positively rotating vector K= (A4 +j B) ¢ #*
will be

E=Acos;bt—Bsinpt-l—j(Asinpt—I—Bcospt)

or the real part of £ which is its projection on a given axis is
equal to e and therefore E may be taken to represent e in phase
and magnitude. It should be noted that the conjugate vector
E is equally available, but it is not so convenient since the
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operation 7 e/t gives — jp e/ ? and the imaginary part

of the impedance operator will have a negative sign.

The complex roots of unity will be referred to from time to
time in the paper. Thus the complete solution of the equation
¥*—1=20 requires # different values of x, only one of which
1s real when # is an odd integer. To obtain the other roots we
have the relation

l=cos2mr+jsin2mr
=ej21rr

Where 7 is any integer. We have therefore

1 2w
ln— _ el n

and by giving successive integral values to r from 1 to =, all
the n roots of X* — 1 = 0 are obtained namely,

Uy 2T .. 2T
a; = e = cos — 4 7 sin —
n n
.47
'y 4T .. 4w
as = e cos —— + J sin ——
n n
.67 .
"y 6T .
as; = e cos —— + j sin ——
n n
a, =e?27 =1
It will be observed that a. as....a, are respectively equal to

a’ad. .. .a, "V,

When there is relative motion between the different parts
of a circuit as for example in rotating machinery, the mutual
inductances enter into the equation as time variables and when
the motion is angular the quantities e/®* and e~/ will appear
in the operators. In this case we do not reject.the portion of
the operator having e~ as a factor, because the equations
require that each vector shall be operated on by the operator
as a whole which when it takes the form of a harmonic time
function will contain terms with e/ and e~7** in conjugate
relation. In some cases as a result of this, solutions will appear
with indices of e which are negative time variables; in such
cases the vectors with negative index should be replaced by
their conjugates which rotate in the positive direction.
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This paper is subdivided as fo'lows:

Part I.—"“The Method of Symmetrical Co-ordinates.” Deals
with the theory of the method, and its application to simple
polyphase circuits.

Part II.—Application to Symmetrical Machines on Unbal-
anced Polyphase Circuits. Takes up Induction Motors, Gener-
ator and Synchronous Motor, Phase Balancers and Phase
Convertors. ‘

Part III. Application to Machines having Unsymmetrical
Windings.

In the Appendix the mathematical representation of field
forms and the derivation of the constants of different forms of
networks is taken up. .

The portions of Part I dealing with unsymmetrical windings
are not required for the applications taken up in Part II and
may be deferred in a later reading. The greater part of Part I
is taken up in deriving formulas for special cases from the
general formulae (30) and (33), and the reading of the text fol-
lowing these equations may be confined to the special cases of
immediate interest.

I wish to express my appreciation of the valuable help and
suggestions that have been given me in the preparation of this
paper by Prof. Karapetoff who suggested that the subject be
presented in a mathematical paper and by Dr. J. Slepian to
whom I am indebted for the idea of sequence operators and by
others who have been interested in the paper.

PART 1

Method of Symmetrical Generalized Co-ordinates

ResoLuTiON OF UNBALANCED SYSTEMS OF VECTORS AND
OPERATORS

The complex time function £ may be used instead of the har-
monic time function e in any equation algebraic or differential
in which it appears linearly. The reason of this is because if
any linear operation is performed on E the same operation per-
formed on its conjugate E will give a result which is conjugate
to that obtained from E, and the sum of the two results obtained
is a solution of the same operation performed on E + E, or 2 e.

It is customary to interpret E and E as coplanar vectors,
rotating about a common point and e as the projection of either
vector on a given line, E being a positively rotating vector and
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£ being a negatively rotating vector, and their projection on
the given line being
E+E
€= —5— (1)
Obviously if this interpretation is accepted one of the two
vectors becomes superfluous and the positively rotating vector
E may be taken to represent the variable “¢’’ and we may de-
fine “¢"" by saying that “e¢”’ is the projection of the vector E
on a given line or else by saying that ‘“‘e¢’’ is the real part of the
complex variable E. '
If 1, a,a*. .. .a* 1 are the n roots of the equationx®— 1 = 0
a symmetrical polyphase system of » phases may be represented

by

E, = Ey,
Ey = a Ey
Ey = a? Eyy
.............. (2)
Ea = a1Ey,
Another n phase system may be obtained by taking
Ey = Ep
Ey = a*Ey
Es = a* Ey,
.............. 3)
E,.= a? (n—l)El2

and this also is symmetrical, although it is entirely different
from (2).

Since 1 +a + a* + a*1 =0, the sum of all the vectors
of a symmetrical polyphase system is zero.

If E, E, E;....E, be a system of n vectors, the following
identities may be proved by inspection:
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B _E1+E2 +E3 +....E,
1 =
n

+E1+aE2+a2E3+.L..a”‘lEn

n

+ El + G2E2 + a4E3 + . .042(”"1) En

n

n Ey+ a1 E+ a2 D E; 4. . a0 DD E,
n

n E +a'E,+a?E;+....a»DE,

B _E1+E2+E3+....En
2 =

n

a1 El +dE2+ a2E3 —+ ... .d”—lEn

+
n
+ a2 E 4+ a?Ey + ot E; +... a2V E,
. K @
+ g—0-D E, + a1 Ey 4+ a20-D Eydqn-D0-DE,
n
‘ + g—-1) E.4+a'Ey4+a?E;+....a-*DE,
n
E:E1+E2+E3+ E,
T n
+ a‘(”—l)El +aB;+a*Ey+... .am! E'}
n
+ (1_2("—1)EV1 + a? EZ + a* E4 + ... a2 (n—l)E”
T "
+ a—(n—1)(-1) El + ar—1 E2 + L ‘a(n—l)(y_l) E’"

+ g1 El + a! Ez + a2 Eg +....a" (n—1) En
. It will be noted that in the expression for E; in the above
formulae if the first term of each component is taken the result is
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E = . L
n 71— or E;. If the succeeding terms of each component involving

E, E;. .. E,respectively, are taken separately they add up to ex-

pressions of the form li’— (14a+a%+....a" 1) which are all

equal to zero since (1+a+a?+....a" 1) is equal tozero. Inlike
manner in the expression for E, Ey. .. E, respectively, all the terms
of the components involving each of the quantities E,E,E;. . etc.
excepting the terms involving that one of which the components

v

T

are to be determined add up to expressions of the form

(1+a+a*+....a"1) all of which are equal to zero, the re-
maining terms add up to E, FE;....E, respectively. It will
now be apparent that (4), is true whatever may be the nature
of E, E, etc., and therefore it is true of all numbers, real complex
or imaginary, whatever they may represent and therefore
similar relations may be obtained for current vectors and they
may be extended to include not only vectors but also the oper-
ators.

In order to simplify the expressions which become unwieldy
when applied to the general n phase system, let us consider a
three phase system of vectors E. E, E.. Then we have the
following identities:

g =ttt Bt E Bt abt @k
3 3
Ea+a2Eb+aEc
= = ” 2
EbE£a+hb+Ec+02Ea+0Eb+a Ec
3 3
Ea + a2 Eb + aEc (5)
+a
3
2 2 2 2 2
Ec_:_Ea!+Eb+Ec+aEa+aEb+aEc
3 3
+a2Ea+az-§b+aEc

(4) states the law that a system of n vectors or quantities
may be resolved when # is prime into n different symmetrical
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groups or systems, one of which consists of # equal vectors and
the remaining (n — 1) systems consist of n equispaced vectors
which with the first mentioned groups of equal vectors forms
an equal number of symmetrical zn-phase systems. When
n is not prime some of the n-phase systems degenerate into
repetitions of systems having numbers of phases corresponding
to the factors of .

Equation () states that any three vectors E, Fy E. may be

F16. 1-—GRAPHICAL REPRESENTATION OF EQUATION 5.

resolved into a system of three equal vectors Eao E.p Eao and
two symmetrical three phase systems FE,i, a? E.i, a Eai, E.,
a E,,;, a? E,,g, the first of which is of positive phase sequence and
the second of negative phase sequence, or

Ea = EaO + Eal + EaZ
Eb = an + a? Eal +a Ea2 (6)
Ec = an +a Eal + a? Ea2
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Similarly
Ia = Iaﬂ + Ial + fa?

¥

Iy = iaO + a, fal +a faQ (7)

v

1. Taﬂ +a fal + a? fa2

Figs. (1) and (2) show a graphical method of resolving three
vectors into their symmetrical three-phase components corres-
ponding to equations (b).

The system of operators Zea Zow Zee Zay Zye Zea may be resolved
in a similar manner into symmetrical groups,

F16. 2—GRAPHICAL REPRESENTATION OF EQUATION 5.

Zaa = Zaa() + Zaal + Zaa2
Zw = Zgao + 0% Zear + a Zaa2 (8)
ch = Zaao +a Zaal + a? Zaa2

Zap = Zavo + Zap1 + Zave
Zbc = ZabO + at Zabl + a Zab2 (9)

an = Zub() + a Zabl + a? Zab2

There are similar relations for #» phase systemis.
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ExpLANATION OF THEORY AND Use OF SEQUENCE OPERATOR
Consider the following sequences of nth roots of unity:

St=1, 1, 1....1

St=1, a7, a2 ...a"®D
St=1, a2 at . g 20D
Sr=1, a7, a~-27... .a (D (10)

+1 = —(r+1) —2(r+1) —(n—1)(r+1)
1, a , a ...a

Sn—l — 1, 'a—(n-—i)y a—2(n—1)‘ . Aa—(rt—-l)’

Consider the sequence obtained by the products of similar
terms of S” and S'. It will be

STl = 1, q-0+D, 204D g—(=DE+D (11)

Similarly
Sk=1, a7 % a 2% . q Dk (12)

and the sequence obtained by products of like terms of this
sequence and 57 is
Stk = 1, q=0HR gm0k = (=1 k) (13)
We may therefore apply the law of indices to the products of
sequences to obtain the resulting sequence.
In the case of the three-phase system we shall have the fol-
lowing sequences only to consider, viz.:

S8 =1, 1, 1
St=1, a% a (14)
S2=1, a, a?
The complete system of currents I, I, I. are defined by
S (Ia) = 8 Lo + S Tar + S e (16)

Similarly the impedances Z,. Zw Z.. may be expressed in sym-

metrical form )
S (Zaa) = 5‘) ZaaO + Sl Zaal + 52 Zaa2 (16)

and the mutual impedances Za, Zp, Z.a are expressed by
S (Zab) = 5‘) ZabO + Sl Zabl + SZ Zab2 (17)
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Attention is called to the importance of preserving the cyclic
order of self and mutual impedances, otherwise the rule for the
sequence operator will not hold. Thus, Za, Zic and Z., are in
proper sequence as also are Z., Zas, Zse.
When it is desired to change the first term in the sequence of
polyphase vectors the resulting expression will be
S =8Tw+ S'ala+ S2ale )
- t (18)
SU)=8Tw+ Sala+ Sal, |

Similarly in the case of the operators S (Z.) we have

S (Zoe) = S" Zavo + St @* Zas + S* a Zape ]}
(19)
S‘ (Z4:n) = S‘O ZahO + Sl a Zubl + 52 0'2 Zab2 J

Similar rules apply to the em.fs. E, Ey E.
S (Es) = S Ewo + St Eay + S Eas |
S(Ey) = S Eao + S'a? Eas + S*a Eu I} (20)
S (E) = S Eao+ Sta Esy + S?a* Eo

It should be kept in mind that any one of the several expres-
sions S (I,) S (I,) S (I.), etc., completely specifies the system,
and each of the members of the groups of equations given above
is a complete statement of the system of vectors or operators
and their relation.

APPLICATION TO SELF AND MuTuAL IMPEDANCE OPERATIONS

We may now proceed with the current, systems S (I, S (Iy),
S (I.) and the operating groups S (Zu) S (Zw) S (Z.) etc. and
the electromotive forces in exactly the same manner as for
simple a-c. circuits. Thus,

S (Eu) = S (Zaa) S (ia) + S (Zab) S (fb) + S (an) S (Ic) (21)
= (~S0 ZaaO + Sl Zaal + 52 Z{m?) (SO Iaﬂ + Sl Ia] + 52 Ia2)

+ (8° Zavo + S* Zany + S* Zare)
(S0 T+ Sta? Lo + S*a I)

+ (S Zao + St a Zayy + S*a* Zae)
(SO fa() + Sta fal + S5? a? Ia?)

= 8% (Zaao + 2 Zavo) Tao + S {Zaaz + (1 + a?) Zas} I
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+ S {Zaa1 + (1 + @) Zapi} Loe
+ St {Zaal+ (1 + a) Zabl} faﬂ

+ S {Zaao + (@ + @) Zaro} Iar
+ St {Zaa2 +2a Zabz} ja2

+ 8?2 {Zaar + (1 4 a?) Zape} Lo
+ 8 {Zoar + 2 @& Zan} Lo

+S2 {Zaao+ (a+02) Zabo} fa2 (22)
Or since 1+4a+a2=0, 14+a=—4a? 1+4a®=—a and
a—+a=—1

S (Ea) =50 (Zaao + 2 Zabo) jaO + 5° (Zaa.2 —a Zab2) fal
+ S (Zaar = @ Zan) Tar + S (Zaar — 0> Zawn) Lo
+ S (Zaao = Zaro) Tar + S* (Zawz + 2 @ Zaso) L
+ N (Zaa2 —a Zab2) ja() + S? (Zaal + 2 a? Zabl) ja!

+ 52 (Zna() - anO) Ia‘l (23)
Or since

S (Zbc) = S0 Zb(:() + St Zbl:l + S? Zbc:!
=8 Zao + S'@* Zay + S*a Zaps
we may write (23) in the form
S (E) = S (Zaao + 2 Zoeo) Tao + S (Zoaz — Zpes) Ty
+ 8 (Zaar = Zoet) Taz + S* (Zaar — Zser) Tao
+ S (Zaao — Zieo) Ial + S (Zaar+ 2 Zier) ja‘).
+ S (Zaar — Zvex) Tao + S (Zoar + 2 Zser) Tar
+ S? (Zaao — Zveo) Lax (24)

which is the more symmetrical form. We have therefore from
(24) by expressing S (E,) in terms of symmetrical co-ordinates
the three symmetrical equations

S Ego = 8 {(Zaao + 2 Zbeo) Tao + (Zaar — Zbes) Tar
+ (Zaar = Zber) Lo}

St Ear = S {(Zaar = Zber) Tao + (Zaao — Zieo) T
+ (Zaar + 2 Zoes) T}

S? Eay = S* {(Zaar — Zver) Tao + (Zaar + 2 Zier) Iy
+ (Zaao = Zoeo) Lna}

(26)
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An important case to which we must next give consideration
is that of mutual inductance between a primary polyphase
circuit and a secondary polyphase circuit. The mutual im-
pedances may be arranged in three sets. Let the currents in
the secondary windings be I, I, and I», we may then express
the generalized mutual impedances as follows:

(I) Zau va Zc'w }
(II) wa Zcu Zav J (26)
(III) ch Za‘w Zbu

Each set may be resolved into three symmetrical groups, so
that

S (Zau) =5 Zauo + St Zaul + S22au2
S (wa) =5 Zb'wo + St Zywr + $? Zyws i (27)
S (ch) = Sﬂ Z(mo + Sl chl + 52 ch2

and we have for S (E,) the primary induced e.m.f. due to the
secondary currents S (I

S(E)) = S (Za) ST+ S (Za) S (L) + S (Zaw) S (Iw) (28)

Substituting for S (I,), S (I,) and S (J») and S (Zu), S (Zaw),
S (Z.w) their symmetrical equivalents we have

S (Ba) = S (Zawo + Zywo + Zew) Lo

b S (Zauz + @ Zyws + @ Zep2) L

+ S (Zawr + @ Zyuwr + @ Zew)) Lo

+ S (Zawr + @ Zowr + @* Zew) Tuo

+ S (Zawo + 0% Zywo + @ Zewo) T

+ 8" (Zawz + Zowr + Zews) T

+ 82 (Zauz + 0 Ziws + @ Zy2) Lo

+ 8 (Zows + Zywr + Zew) T

+ 8 (Zawo + @ Zywo + @ Zeyo) Lo (29)
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On expressing S (E,) in symmetrical form we have the following
three symmetrical equations

S Eao = S° {(Zauo + Zywo + Zewo) Tuo
+ (Zawz + @ Zowr + @ Zuys) L
+ (Zaus + @ Zyws + a Zew)) Lo}

St Eay = S {(Zaus + @ Zows + 0% Zen) Lo
+ (Zawo + % Zywo + @ Zewo) L (30)
+ (Zawz + Zowr + Zews) Ls}

S? Eaz = S {(Zouz + 0% Zowz + @ Zown) 10
+ (Zawr + Zyws + Zewr) T
+ (Zawo + @ Zywo + @* Zeo) Lo}

For the e.m.f. S (E,) induced in the secondary by the primary
currents S (I,) we have

S(E) =S (Za) S (L) + S (Zo) S (h) + S (Z.) S (L) (31)

Since S (Zy.) bears the same relation to S (Z.,) as S (Za)
does to S (Zyw) and S (Z,.) bears the same relation to S (Zyw)
as S (Zaw) does to S (Z.,) to obtain S (E,) all that will be neces-
sary will be tointerchange Zyw and Z., in (29) and change Fyo Fu1 Lo
to Iao Iy and I,» respectively, this gives

S (EW) = S (Zauo + Zowo + Zews) Tan

4+ 8 (Zauz + 02 Zyws + @ Zows) I

+ S (Zaus + @ Zows + a* Zey) oo

+ S (Zauwr + 0* Zyuwr + @ Zewt) Tno

4+ S (Zawo + @ Ziwo + a2 Zewo) I

+ S (Zauwz + Zowr + Zews) Lo

+ 82 (Zau2‘+ a Zyws + a* Zys) Ioo

+ 8 (Zawr + Zows + Zew) T

+ 8 (Zawo + Zowo + Zewo) Lz (32)



644 FORTESCUE: SYMMETRICAL CO-ORDINATES [June 28

and the three symmetrical equations will be
8 Evo = S {(Zawo + Ziwo + Zew) Lo
+ (Zaws + @ Zyws + @ Zywr + @ Zews) Tur
+ (Zawr + @ Zyw + a* Zeyy) oo}
S' {(Zaws + @ Zyws + @ Zewi) Tao
+ (Zawo + @ Zywo + @* Zewo) T (33)
+ (Zaws + Zywr + Zews) oo}
§? Bus = 8 {(Zawz + @ Zows + @* Zewn) o
+ (Zaws + Zywr + Zew) T
+ (Zawo + a2 Zywo + @ Zeyo) I}

fi

Sl Eal

The same methods may be applied to polyphase systems of any
number of phase. When the number of phases is not prime the
system may sometimes be dealt with as a number of polyphase
systems having mutual inductance between them:—For example,
a nine-phase system may be treated as three three-phase sys-
tems, a twelve phase system as three four-phase or four three-
phase systems. In certain froms of dissymmetry this method is
of great practical value, and its application will be taken up later.

For the present part of the paper we shall confine ourselves
to the three-phase system, and dissymmetries of several dif-
ferent kinds.

The operators Z,, Zaa, etc., must be interpreted in the broadest
sense. They may be simple complex quantities or they may

be functions of the differential operator - gt . Forif

i1=23 (A, cosnwt+ B,sinnwt)

it may be expressed in the form
J (‘iﬁ:él_é‘ einwt + _AL:%J_&' e—jmvt)

I, 1 (34)
=2t

real part of T
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and any linear algebraic operation performed on I/2 will give
a result which will be conjugate to that obtained by carrying
out the same operation on /2 and since the true solution is
the sum of these results, it may also be obtained by taking the
real part of the result of performing the operation on I

MobiFicAaTION OF THE GENERAL CAsE MET WITH IN PracTICAL
NETWORKS

Several symmetrical arrangements of the operator Z,. etc.
are frequently met with in practical networks which result in
a much simpler system of equations than those obtained for
the general case as in equations (29) to (33). Thus for example
if all the operators in (26) are equal, all the operators in (27),
excépt' S Zauwo S° Zpwo and S° Z,,0 are equal to zero, and these
three quantities are also equal to one another so that equation
(30) becomes

SO an = SO (Zauo + waﬂ + Zcu()) qu
S En =0 t (36)
52 E,,z = 0

and equation}(33)
S Euo = S (Zawo + Zowo + Zewo) Tao
S'Eu=0 t (36)
S*En=0

This is the statement in symmetrical co-ordinates that a sym-
metrically disposed polyphase transmission line will produce
no electromagnetic induction in a second similar polyphase
system so disposed with respect to the first that mutual induc-
tions between all phases of the two are equal except that due to
single-phase currents passing through the conductors.

If in (26) the quantities in each group only are equal, equations
(30) and (33) become

Se EaO = S0 (ZauO + Zb'wﬂ + chO) IuO
St Eal = St (ZauO + a? wa() + a chO) Iul (37)
52 Ea2 = S2 (ZauO + a Zb‘wﬂ + a2 chO) fu2
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S Euo = §° (ZauO + wao + chO) ia() ]
St Eal =S (Zau() + a ZMUO + a? Ztv()) Ial (38)
52 Ea? = St (Zuu0’+' a? wao + a ZovO) fa2

SyMMETRICAL ForMs oF COMMON OCCURRENCE
A symmetrical form which is of importance because it is of
frequent occurrence in practical polyphase networks has the
terms in group (I) equation (26) all equal and those in group

(IT) cos —2:—31— times those in group (I) and those in group (III)
4T . .
cos —o— times those in group (I).
2
Since cos —2§1—[ = & -; & = cos _4_311' we have on substituting

the values of the impedances in this case,
8 Bay = S {Zawo (1 +a + @)} Lo = 0
S' Eay = S' 13 Zawo L (39)
S? Egy = S2 13 Zawo L

SOEuO S0 {Zauo (]- +a+ (12)1 Iao = ()

It

Sl Eul Sl 1% ZauO ial (40)

Sz Eug = 52 1% Zau() Ia2
The elementskin group I may be unequal but groups II and

III may be obtained from group I by multiplying by cos —4-3£

and cos %1—'.- respec‘tively.
The members of the three groups will then be related as fol-
lows, the same sequence being used as before,

(I) Zauy va; ch

2 2 2

(II) _K;i Zc'wv 4 .+2_ ¢ Zauy _a—"—;_a— va (41)
2 2 2

am 2z, ¢ el ‘£,
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Consequently the following relations are true:

S Zywo = 2% P $ Zuuo
§ Zewy = L2 L 50 2,
S' Zywn = ; S Zous
S* Zywy = + © P L
S Zpy = *2' % S Zu
$ Zuw = =% P S Zous

647

(42)

Substituting these relations in (30) and (33) we have for this

system of mutual impedances
auO + wa() + chO =0

Zawo + @ Zywo + @2 Zewo = 13 Zewo
Zawo + @* Zowo + @ Zeyo = 13 Zawo
Zowr + Zywy + Zen = 13 Zon

Zowr + @ Zywn + a* Zewy = 15 Zan
Zan + @ Zywn + @ Zop1 = 0

Zaws + Zywr + Zevz = 15 Zous

Zawr + @ Zyws + a* Zopa = 0
Loz + a* Zyws + 0 Zews = 1‘% Zaus

which on substitution in (30) and (33) gives

8 Eao
St Eqy
S? B,
S Euo
St Eu
S? Eus

=0
= St {1’;‘ Zaul Iuo + 1% Zau() Iul + l’12' Zauz vu?}

S? {13 Zaws Lio 4+ 13 Zawr Ly + 13 Zawo L)
=5 {1} Zawz Lot + 13 Zows L2}

= S {13 Zawo Tar + 13 Zawz Las)

= 8 (13 Zowr Tar + 13 Zawo T}

(43)

(44)

(46)

(46)

(47)
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The above symmetrical forms in which the factors cos 2-3—15

and cos %11 occur apply particularly to electromagnetic induc-

tion between windings distributed over the surfaces of co-
axial cylinders; where if the plane of symmetry of one winding
be taken as the datum plane, the mutual impedance between
this winding and any other is a harmonic function of the angle
between its plane of symmetry and the datum plane. In other
words, the mutual impedances are functions of position on the
circumference of a circle and may therefore be expanded by
Fourier’s theorem in a series of integral harmonics of the angle
made by the planes of symmetry with the datum plane. Since
the same procedure applies to all the terms of the expansion
it is necessary only to consider the simple harmonic case. In
the partially symmetrical cases of mutual induction, .such as
that taken up in the preceding discussion, there will be a differ-
ence between two possible cases, viz:—Symmetrical primary,
unsymmetrical secondary, which is the case just considered, and
unsymmetrical primary and symmetrical secondary in which
the impedances of (26) will have the following values

(I) Zrm; Zbcy Z{:w

—_—

2 2
an “ + a? 7. @ 4; @, a_'_g__‘f o @8
|
a + a* a + a* a + a?
D 252 Ze S5 Zow g Zne )

The results may be immediately set down by symmetry from
equations (46) and (47), but the difference between the two
cases will be better appreciated by setting down the component
symmetrical impedances, thus we have

a+a

S Zon = LE L 50 2o
$ Zao = LS Zuo
S Zyur = - + ® S Zo
S Zpuy = + Y S Zoun .
St Zo = + L St Zou
S Zopy = - “; © S Zous
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Substituting these relations in the impedances used in (30)

and (33) they become
Zawo + Zwo + Zewo = 0
Zawo + @ Zywo + @* Zeyy = 15 Zauo
Zawo + @ Zywo + @ Zeyo = 13 Zauo
Zan + Zywr + Zey = 13 Zau
Lot + 0 Zywy + 02 Zpy =0
Zaa + @* Zyn + a Zewy = 15 Zaw
Zar + Zyws + Zevy = 15 Zoun
Zoir + @ Zyws + @ Zey = 1} Zaws
Zows +a* Zyws +a Zos = 0

And we have from (30) and (33), or by symmetry
S0 an =50 {1% Zau2 ful + 1% Zaul ju2}

It

Sl Ea,] Sl {1% Zau.o ful + 1% Zau2 fu?}
sz Ea‘l = ksvz {1% Zaul iul + 1% ZauO f‘u‘l
SV E. =0

St Eul =5 {1% Za.ul in + 1% ZauO iul + 1% Zau2 juZ}
52 Eu? = 32 {1% ZauQ va.() + 1% Zau] jrzl + 1% ZauO fu2}

(60)
(61)
(62)
|
;; (63)
J
|
L (64)

|
J

If the angle between the planes of symmetry of the coils and

. 27 4
the datum plane are subject to changes, cos ——- and cos T

3
in the preceding discussion must be replaced by

oo (27 4 g) ot ey
cos(T-’rG)— 5 et + zef

) 2
co (3 +0) = e 5o

where 6 is measured from the datum plane

3

|

J (56)

In the strictly symmetrical case of co-axial cylindrical sui-
face windings in which the members of each.group of mutual



650 FORTESCUE: SYMMETRICAL CO-ORDINATES [June28

impedances are equal, the result of substituting (66) in the

equations for induced e.m.f. will be

S By =0 )
St By = SU(13 Zuwo €0 1) j
S? By = S (1% Zawo €770 I,5)

SO E,n =0

SUE, = S' (13 Zauo €790 Io1) f
S Eyy = St (1% Zawo €90 L)

(66)

(67)

In the case having symmetrical primary and unsymmetrical
secondary in which members of each group are different, but
in which there are harmonic relations between corresponding

members of the different groups, the impedances are
(I) Zauy vav Z{"w

(11)( e+

a?
2

e—J0 ) Z
2 ' 2
( %6’” + agf”) Zau, (92— et + —C;— e—-"”) Zbr
2
(I1T) (-%— it + —g—e—f") Zo

(—‘;— it 4 - c—fe) Zew, (—921 el + -(‘Q—e—ﬂ) Zau

(68)

The symmetrical component mutual impedances will have the

following values in terms of Zauwo Zaut Zau2

2
S Zywo = ( ; ei® + ’%" e—jl)) S0 Zauo
2 "
Se Z,-;,g = aé C’jo + —(21‘ e~~-_]0> N Zauo
a? e—]ﬂ
W, = ) © 17
St Zyw: 5 el + 3 ) S Zou
L + @ ,-i0) sz
2 2 au?2

Sl chl =

(
(
5 2 =
(
(

52 ch2 =

(69)
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Substituting these relations in the impedances of equations

(30) and (33) they besome
Zawo + Zowo + Zewo = 0
Zawo + a Zywo + a® Zewo = 1% Zauo elie
Zawo + @ Zpwo + a Zewo = 1% Zauo €7°

Zaul + Zbﬂ'l + chl = 1’% Zaul e 78
Zonr + a Zb‘wl + a? Zcul = 1% Zaul Iz
Zaul + aZ Zb‘wl + a chl = 0

Zawz + Zywz + Zevy = 13 Zgus €7°

Zawz + @ Zyws + @ Zey2 = 0

Zowz + 0 Ziws + @ Zews = 15 Zgy €7°
which on substitution in (30) and (33) give
S Eqo = 0

St Eal =S {1% Zauy €70 iuo + 1% Zauo €78 iul
13 Zous €70 qu}

S? EaZ = 5% {13 Zsus e79° IuO + 13 Zour €778 iul
+ 1% Zauwo €799 I0}

S0 Euo =5 {1% Zau2 =7t Ial + 1’% Zaul e’? fa2}
Sl Eul Sl {1% Zauo e—jﬂ ial + 1% Zcm2 ejo fa?}
52 Eu2 = $* {1% Zaul e=70 Ial + 1% Zauo e7® fu2}

(60)

(61)

(62)

(63)

(64)

In the case of unsymmetrical primary and symmetrical
secondary, we have for the value of the impedance in terms of

ZauO Zcml and Zau2
(I) Zam va» Zc'w

2
(11) (—-‘2‘-— et + Lze—f0> Zse,

a?

(5 o + ) 2o (o +

(111) (-‘322— e + o e‘“) Zew,

2 2
( 0‘2 ejo + _a2_e—j0> Zauy ( 02 ejO + .iz_e-j0> Zbc

5 e’f") Zau

+ (66)
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The symmetrical component mutual impedances in terms of
ZauO, Zauly Zauz are

2
SO wao (—;' ejo + %_e—jd) SO Zauo
aZ

3‘0 chO = ( 2 ej0 + ‘—;‘-e_jo) SO ZauO
j 0
S' Zywy = (”2 + %e‘f”) S5 Zau
(66)
$* Zuws = (o o + Ja)S“’z
bw2 = ( 2 € + 2 £ au2
2k
St chl = < 2 ) St Zaul
j 0
$ Loy = (% o0 + "2’ ) S* Zuus
And the impedances of equations (30) and (33) become
Zaul) + wao + Zw(] =0
ZauO + a wao + a2 chO = 1% ZauO e—jo (67)
Zau() + a’ wa() + a Zm:o = 1% Zauo el®
Zaul + Zb‘wl + chl = 1% Zaul e’?
Zaul + a wal + a2 chl = O (68)
Zaul + a2 wal + a chl = 1% Zaul e_jo
Zcu2 + wa2 + ch2 = llf Zau2 e—jﬂ
ZauZ + a wa2 + 0,2 ch2 = 1% Zau? ejO (69)
Z¢u2 + a2 wa + a ch2 = O

And on substitution in (80) and (33), or by symmetry from
(63) and (64), we have

S° an = S0 {1% Zau2 elt Iul + 1% Zaul e=70 Iu2}
SUEa = S' {1} Zowo €90 Tuy + 13 Zaus €730 Lo} f (70)
Sz EaZ = Sz {1% Zaul ejo Iul + 1% ZauO e—jﬂ Iu? }
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S Eu =0
St Eul = S {l% Zour €770 jaO + 1% Zauo €770 iul .

+ 13 Zauz €77° fa2} ' { (1)
SzEui = 52 {1% Zaus Zh fa0+ 1% Zauleja ial

+ 13 Zauo €7° I} }

A fuller discussion of self and mutual impedances of co-axial
cylindrical windings will be found in the Appendix. It will be
sufficient to note here that in the case of self inductance and
mutual inductance of stationary windings symmetrically dis-
posed if they are equal

My = M, = M., =2(A,.cosz n ”)
(72)

3
Laa=Lbb=Lcc=Maa=Mbb=Mcc':ZAn

If the windings are symmetrically disposed but have different

number of turns
Laa =lMaa = ZAn 1

Lbb = Mbb = ZBIL (73)
Ltc = Mcc =2 (/‘n

My = 2( VA, B, cos 2;”’)
M, = z( VEB.C, cos 2 z ") (74)

M., = z( VT, A, cos 2’;”)

If the coils are alike but unsymmetrically spaced La. Lss L. have
the same values, namely 3 4, and

]

2 {(A,.cosn 8,) cos 2’;7'-

+ (4, sinn 6)) sin Inm }

3
My, = 2 %(A,.cosnﬂa)cosz’“r ‘
3 : (76)
. . 2nmw
+ (4. sin 7z 6;) sin 3 }

z % (An cos n 03) cos 2 n31r

‘4 (4, sin n 05) sin 2;”'- %

Mab

S
)
I
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If they are unequal as well as unsymmetrically disposed but are
otherwise similar L., Ly L.. have values as in (64) and

My =23 { (v/A, B, cos n 6,) cos 2 ';r
+ (v/4, B, sin n 0)) sin 2 n31r %
My, = 2% <:(\/B,, C, cos n 0,) cos 2 1;1r
(76)
5 - . 2nTw
+ (v/Bn Cnsin 1 0,) sin 5 }
M., = z{ (v/Co AL cos n 6,) cos 2’;”
—_— . . 2nw
+ (v/C, A, sin n 0;) sin 3 }

Where the windings are dissimilar in every respect the expres-
sions become more complicated. A short outline of this subject
is given in the Appendix.

In the case of mutual inductance between two coaxial cylindri-
cal systems, one of which 4, B, C is the primary and the other
U, V, W the secondary, the following
conventions should be followed:

(a) All angles are measured, taking
the primary planes of symmetry as data
in a positive direction. .

(b) The datum plane for all windings &%lon
is the plane of symmetry of the primary o
A phase. - ‘ oV We

. .- . . @ . AL )

(¢) All mechanical motions unless B c
otherwise stated shall be considered as. Fic. 3—CONVENTIONAL
positive rotations of the secondary DISPOSITION OF PHASES
cylinder about its. axis, © AxD DirecTioN OF Ro-

(d) The conventional disposition of TATION:
the phases and the direction of rotation of the ‘secondary “wind-
ing are indicated in Fig. 3.

We shall consider five cases; Case 1 being the completely sym-
metrical case and the rest being symmetrical in one winding, the
other winding being unsymmetrical in magnitude and phase, or
both, but all windings having the same form and distribution of
coils.

cee>
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Case 1. All Windings Symmetrical.
Mau = A{br = ‘1[:-“< = XY A,,, CcoS n 0 ]

Myw= Moy = My, = X A, cos n (2—31 + 0) l
(T7)

A'Mcv = fwuw = Mbu

I

X4, cosn(%:—r + 0)

Case II. Primary Windings equal and Symmetrical, Secondary
Windings unequal bul otherwise Symmetrical.

My =3 A, cosn, My, = 3 B,cosn 6, M.,
= JYC,cosnf
Myw = Y Cycosn ( )
M., = & 4, cos n( )
2
M, = X B, cos (? + 0) (78)

M., = 2 B,cosn (47‘” + 0),

Mew =23 C, cos n (— + 0),

My, = 3 A, cos n (4_7r + 0)

Case II11. Primary Winding Unequal but Otherwise Symmetri-
cal, Secondary Winding &qual and Symmetrical.

Mo, =X A, cosn 0, My,=2 B,cosn 0, M,.,=% C,cosnb
Mb,,,=EB,lcosn<2,;T +0).
27
M., =2Cncosn(—3—+0)
27
M, =2 A4 cosn(_3—+0 v (T9)
4T
M., =2C cosn( 3 +0)’
47
Maw=2.Ancosn(T +0)'
My, =ZB,.cosn(é3l+0)
)
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Case 1V. Same as Case 1l except in addition to inequality
Secondary Windings are Displaced from Symmetry by angles o,
a, and az whose sum 1is zero.

M,, =2 (A,cosa,cosn b + A,sin a;sinn 0)
My, = 2 (B,cosascosn § + B, sin a,sinn 6)

M., = 2 (Cncosascosn 8 + C,sin azsinn §)

+

')

My, = Z { C, cos a3 cos n (137L

4+ C, sin a3 sin n (—2—371 + 0)}
. 2w
M, = 2 {A,.cos oy Cos 1 (—§~ + 0)
2

+
5

. . T
+ A4, sin «; sin n(

)]

My, = 2 {Bncosazcosn(-%"i%—ﬁ)

. . 2T
+ B, sin as smn(——,—r +0)} (80)

. 47

M, = 2 {B,, COS Qs COS 1 (T +0)
) . 47

+ B, sin «. sin » (T + 0)}
. e

My, =2 {Cncosagcosn( 3 +0)
. . 47

+C,,sma3smn(—~§—+0)}
47

My, = 2 {A,,cos «; COS N (~3—— + 0)

+ A4, sin alsinn(4—31r + 0)}

/

Case V. Same as Case II1I except that the Primary Windings
are Unsymmetrically disposed with respect to one another as well as
being unequal.
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Mo = 2 (A,cosaycosn B + A, sina;sinn )
My, = Z (Bncosascosn 8 + B, sin aysinn 6)
M., = Z (Cn.cosazcosn b + é‘,, sin azsinn )
Mbw=2{B cosazcosn< +0>
. . 2T
+B,.sma2smn<—3—+0)}
2
M., =2 {Ancosalcosn(T + 9)
. . 2T
+ A4, sin a, smn(T +0)}
M, =32 {C,Lcosascosn(2—371 + 0)
(81)
+Cusina3sinn<—2—31 +0)}
4T
M., =32 {C" cos g cosn<-3— + 0)
+ C, sin ax sin n (4—375— + 0)}
4
My = = {A,. cosalcosn<~—3— + 0>
. . 47
+An51nalslnn(—3—+0>}
\ 4
My, = 2 {B,,cosmcosn(T + 0)
. . 4T
+ B, smagsmn<—3 + 0)}

The expressions for dissymmetry in both windings and for un-
symmetrically wound coils, etc., are more complicated and will be
dealt with in the Appendix.

The impedances Z,, Zw, etc., Za, Zi, etc., are functions of
M., Mw, etc., Mg, My, etc., and the resistances of the system,
The component of e. m. f. proportional to the current due to
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mutual impedance is so small that it may generally be neglected

so that Z,. becomes —3!— Moy, Zn, = ——(%— M, and so forth.

If the secondary winding is rotating at an angular velocity
«, 0 in equation (86) becomes « ¢ and the operators Z,,, etc.
operate on such products as e’ I, e I,, where I, and
I.. are three variables.

The following relations will be found useful in the application
of the method in actual examples.

If D denotes the operator . and ¢ (Z) is a rational algebraic

function of Z dx
v (D) e = ¢ (a) oo |
w (D) feer X} =e (D +a) X P (82)
¢ (D)Y =e*¢ (D +a) Ve J|

Where X and Y may be any function of x.

Star and Delta e.m.fs. and Currents in Terms of Symmetrical
Components

It has been shown in the preceding portion of this paper that
the e. m. fs. E, E, and E, and the currents I, I, and I. whatever
their distortion, may be represented by the sum of symmetrical
systems of e. m. fs. or currents so that the two expressions

5 (Ea) = SO EaO + Sl Ea1 + 52 EQQ ]
§ . . t (83)
SU) =8I+ S Ty + S I J
completely define these two systems.

If we take the delta e. m. fs. and currents corresponding to

SO Foo, St Fay and S? Egs, St Iy, S? o, we have, since Ey; leads E,,
T

o) and Eyeo lagé behind E,s by the same angle

by
S0 Epeo = 0
St Eper = j /3 S' Eay
St Eyr = — j V3 S Eay
S I,.o = indeterminate from S (I,) (84)

St jhpl = ] ‘\/L:—;— St Ial

S Freo = —j \% s L,y
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And therefore if we take Eq as the principal vector

S0 Eabn =0 \1
S'Eay = ja+/3Ea, i
. _ (86)
52 Eab2 = —'j a? \/3 Ea2
S (Ew) = S' Ean + S Eas J
The last equation of group (86) when expanded gives
Eab = ] \/§ ((l Eal — a? Ea?)
Ebc = ] \/—g (Eal - Ea?) (86)
E(‘a = j \/§ (612 Eal —a Ea‘_’) J
which may also be obtained direct from (83) by means of the
relations .
e ' Eab = Eh - Ea
Ebc = Ec - Eb
. Eca = Ea - EO
Similarly

S I, = indeterminate from S ([,)

Sl fabl=ja ].-._. ia.l
V3

1

52 jab2 = ] (12 \/3_. fag (87)

S (jab) =50 fabo + St Iab] + S? Iab‘z

with similar expression for I Is. and I, which may be verified
by means of the relations

ia =Ica_iab+ia0
[b = Iab— jbc + Ia@
Ic = fbc_ Ica+Ia0

Conversely to (84) we have the following relations



660 FORTESCUE: SYMMETRICAL CO-ORDINATES [June 28

S0 B = indeterminate from S (E.,b)
StE, = < S By = —j —=
1 \/ bel ] _\/
S?Ep = j—— S?Epe = j—= S*Ea
\/ \/ (88)
S¢ I,y = indeterminate from S (1)
Sty =—jV3S Ia=—ja 3 S I

SPlp= jvV3SThhe= ja35 I

It will be sufficient in order to illustrate the application of
the principle of symmetrical coordinates to simple circuits to
apply it to a few simple cases of transformer connections before
proceeding to its application to rotating polyphase systems to
which it is particularly adapted.

UNSYMMETRICAL BANK OF DELTA-DELTA TRANSFORMERS
OPERATING ON A SYMMETRICAL CIRCUIT SUPPLYING A
BALANCED SYSTEM

Let the transformer effective impedances be Z,z Zsc Zca and
let the secondary load currents be I, I, and Iw and let
the star load impedance be Z. One to one ratio of trans-
formation will be assumed, and the effect of the magnetizing
current will be neglected. The symmetrical equations are

0 = b‘) (ZABO Iabo + ZABZ fabl + Zlml fab?)
Sl Euvl = Sl Eabl - Sl (ZAnl fabo + ZABO jabl + ZAB2 jab?)
S? By = 0— S? (Zagz Tivo + Zast Tavt + Zago Taro)

(89)
SO fu() = 0
St Z I-ul = Eul
N4 f'u‘l = Ew

Since the transformation ratio is unity and the effects of
magnetizing currents are negligible S! Fan = S Tyys, S T
=5? [sv2. And therefore by means of the relations (86), the last
two equations may be expressed
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St Euvl =S5'32 fabl

} (90)
S? Eys = S*3 Z I
in other words, the symmetrical components appear in the
secondary as independent systems, 3 Z being the delta load im-
pedance equivalent to the star impedance Z.

Substituting from (90) in the second and third equation and
eliminating I, by means of the first equation, and we have

St E"bl =S5 {( 3Z 4+ Zypo — —-Z‘—\-?—ZI—Z;A—BQ—») T
AB

2
(2= 22V }

(91)

2 o
S0 = S {(zm— A )L,,,1
Zapo

+(32+Zm——%%éi)nw}
ABO

which, when S! and S? are removed, give two simultaneous equa-
tions in Iop; and Iope.

A modification of the problem may occur even when the load
impedances are symmetrical, as they may have symmetrical
but unequal impedances Z; and Z,, to the two components
Iyi and [ respectively, as in the case of a load consisting of a
symmetrical rotating machine. The equations corresponding
to (89), (90) and (91) then become

0 =8 (Ziwo Iab() + Zm jabl + Zim ja/bz)
St Euvl = Eabl - St (ZABI fabo + ZABO iabl + ZAB2 fab2)

52 Euv2 = O* 52 ('ZABZ fabo + stl iabl + ZABO fab‘z)
. (92)
S0 Iuﬂ =0

§'Zy Iy = Eu

S2Z2 fu2 = Eu2
Sl Euvl = S]' 3 Zl Iabl

l (93)
S B, = S*3 Zy Iy )
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. v Zam Z
St Egy = St { (; 32, + Zywo — ——AELA—Bz) Iabl

ABO
+ (an =" ZZABI > Lopo }
ABO

(94)

2 8
SO =S {(z,ml - ZZ““ ) T
ABO

+<3Z'.»+szo“ —Z—‘—“Z—Z—:‘—z-)fm }
AB!

w

Effective Imp.- Z ¢

A

Effective Imp. - Z,5

.
F16. 4—OPEN DELTA OorR V CONNECTION.

In an open delta system Z,g = Zygo = Zapo — Zasthe trans-
formers in this case being both the same, equation (91) becomes
in this particular case where Z,y is infinite

St By = S {BZ + 2 Zag) T + Zua Lo} | o5
$20 =S8 {Zulwn + BZ + 2Zss) T o} f
and we have
Tao = —Tapy — Iaps (96)
Similarly, instead of (94) we have
St Eay = S{(3 21+ 2 Zus) Lavs + Zas Tare} 1 o
$20 = S {Zpp L + (322 + 2 Zys) Lane) j

The secondary voltages are obtained from (90) and (93) for
this latter case.
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The solution of (96) gives

663

(98)

o 3214 22 5
T 87,32k BZi+ Zaw
5 Zun 8
) = E,
o BZ ¥ 32w BZi T Zm)
. 1
IabO 3 Zl + 3 ZAg Eab
And we have
St I = S 821+ 2 20 E,
3(Z,+ ZAp) <ZI +—3AB )
S? I = S - Zan > E,
3(Zy + Zu) (Zl +3—“)
And therefore
A N } Za Ey
. Z
Zi+ 22 2+ 2w (zl + L )
fb — Eb L %ZAB
Z,
Z, + 23“‘ (Zy + Zu) ( zZ,+ )E.,b
I = EcZ
AB
Z, + 3

(99)

(100)

Three Phase System with Symmetrical Waves Having Harmonics

We may express E, in the following form:

En E, eiwt 4 E, es2vt E; e3uwi 4

> En ej nwt

where E, is in general a complex number.

i
J

(101)

If the system is symmetrical three-phase E, is obtained by

displacing the complete wave by the angle — _231 or
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2x 47
3 - I3
E, =e¢ E, e*m + ¢
.27 .47 .6 x
. I3 o, 8 3
E. . =c¢ E; e + e E, ei2vT ¢ E; eB*vm +
2 x .2
i %

. 3
or since e =a? e = a etc.

.67

. ‘-]_ :
E, et + ¢~ P Eyeidvr 4

E, = E, e/t 4+ E, 520  FE, i3t 4

E, = a? E, & + a Ey 692 + Eyei3e + . | | (102)
E.=aE e + a*Ey ™ + Egei™ + . . . Jl
or
S(E,) = S {E;ei5ut + Eeei0% + Eqei® 4 . . .}
+ SU{E e/ + Eqeit  E.ei7 + . . .} (103)
+ S* {Ey /2% 4 Egeio + Egei®vt 4 . . | ]

S (Ea) =953 (E3n ej:;nwz) + Sty (E3n—2 ej(3n—2)'w'r)
+ $? 2 (Egn—y &G —Dur) (104)

This shows that a symmetrical three-phase system having
harmonics is made up of positive and negative phase sequence
harmonic systems and others of zero phase sequence, that is to
say of the same phase in all windings, which comprise the group
of third harmonics. These facts are not generally appreciated
though they are factors that may have an appreciable influence in
the performance of commercial machines. It should be particu-
larly noted that in three phase generators provided with dampers
the fifth, eleventh, seventeenth, and twenty-third harmonics
produce currents in the damper windings.

In dealing with the complex variable it will be convenient to
use for the amplitude the root mean square value for each har-
monic. When instantaneous values are required, the real part
of the complex variable should be multiplied by V2. In the
remainder of this paper this convention will be adopted.

Power Presentation in Symmetrical Co-ordinates
Since the power in an alternating current system is also a har-
monically varying scalar quantity, it may therefore be repre-
sented in the same manner as the current or electromotive force,
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that is to say by a complex variable which we shall denote by
(P4+37Q) + Py +70Qux) P+ j Q being the mean value, is
the term of the complex variable of zero frequency, P represent-
ing the real power and Q the wattless power VP? + Q will be the
volt-amperes.

The value of the complex variable (P + j Q) 4+ (Px + j Qx)
may be taken as

P+7Q + Pu+jQu) =EI+EI (106)

with the provision that for all terms having negative indices the
conjugate terms must be substituted, these terms being present
in the product £ I +£ I, which is the conjugate of the product
(106). A similar rule holds good for the symmetrical vector
system

S (Ea) = SoEaO + St Eal B Sn—1 Ea(n—-l)

. B o (106)
SUa) =8 Tao+ S T+ . . . S*=1 Lau—1)

The conjugate of S I, is
SUH) =STow+S*DIn+ . . . STy (107)

and the Power is represented by
(P+Py) +7(Q+ Q) =2 (S(E)S L) + S(Ea) S (L)} (108)

with the same provision for terms having negative indices the
sign 2 signifies that all the products in each sequence are added
together.

z {S (ja) S (Ea)} =25 {jao Ea() + jal Eal +
Aa(n—l) Ea(n—l)}
+ 2 S {0 Bar + Loy Bz + I Eoy +

ia(n—l) an}

~

) o ] (109)
+ 2 S2 {Ia() Ea2 + Ial Ea3 + fa? E4 +

Latn—1) Ear}

+ 2 S (Lo Eaw-ny+ Tas Eao +
+ fa(n—l) Ea(n—Z)}
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The terms prefixed by S', S% S$* . . . S®=Dall become
zero and since S° becomes n
ES(ju)S(Ea) =n{ia0Ea0+ja1Eal+ . .
ja(n—l) Ea(‘n—l)} (110)

In a similar manner it may be shown that

XS L) S(E) =n {LaEa + Iy Eau—ry + Lz Eau—2y + - . .
ia(n—l) Eal} (111)

and therefore

(P +jQ) + (PH +] OH) =n {jaOEaﬂ + falEal +
Ton-1) Eatn-1)}

L o . (112)
+ n {IaOEaO+ IalEa(n—l)+ . . . Ia(n—l)Ea]}
For a three-phase system the expression reduces to
(P +JQ) + (PH +] Qb) = 3 (jaoEaO + ial Ea] + ja‘l Ea2) (113)

+ 3 (jao Ea(} + Tal EaZ + fa2 Eal)

In the above expression P 4+ Py is the value of the instantan-
eous power on the system, P being the mean value and Py the
harmonic portion. When the currents are simple sine waves, Q
may be interpreted to be the mean wattless power of the circuit
or the sum of the wattless voltamperes of each circuit. In
rotating machinery since the coefficients of mutual induction
may be complex harmonic functions of the angular velocity,
this is not strictly true for all cases; but if the effective impedances
to the various frequencies of the component currents be used, it
will be found to be equal to the mean wattless voltamperes of
the system with each harmonic considered independent.

In a balanced polyphase system Py and Qg both become zero.

The instantaneous power is a quantity of great importance in
polyphase systems because the instantaneous torque is propor-
tional to it and this quantity enters into the problem of vibra-
tions which is at times a matter of great importance, especially
when caused by unbalanced e.m.fs. A system of currents
and e. m.fs. may be transformed to balanced polyphase by
means of transformers alone, provided that the value of Py is
zero, while on the other hand polyphase power cannot be
supplied from a pulsating power system without means for
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supplying the necessary storage to make a continuous flow -of

CHeTRY: PART II

Application of the Method to Rotating Polyphase Networks

The methods of determining the constants Z, Z,, M, etc., of
co-axial cylindrical networks is taken up in Appendix I of this
paper. It will be assumed that the reader has familiarized him-
self with these quantities and understands their significance.
We shall first consider the case of symmetrically wound machines
taking up the simple cases first and proceeding to more complex
ones.

SyMMETRICALLY WOUND INDUCTION MOTOR OPERATING ON
UNSYMMETRICAL PoLyPHASE CIRCUIT

Denoting the pole pitch angle by 7 let the synchronous angular
velocity be wo and let the angular slip velocity be w;. And let
St E4y S? Eq be the symmetrical components of impressed poly-
phase e.m.f. Let R, be the primary resistance and R, the
secondary resistance. The primary self-inductance being Mg,
that of the secondary being M,, and corresponding symbols
being used to denote the mutual inductances between the dif-
ferent pairs of windings. Then by means of (39), (40), (66) and
(67)

d -

St Enl = St {Ra jal + 1% Maa —W Ial

d . .
+ 13 Moy eitomin I, |
o~ 1 d
SQEa2= S? Rafa2+1’2_Maa"d‘T Ia?

+ 1% Man —d'e'j(w"w‘)l Tu?}

dt

y t (114)
d Iul
dt

ddt e~ (wo —wi)t Ial }

S E, =0 = S2{Ruf,,2+1%M,m %—qu

dt eJ (wo - w)t fa? }
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denote 13 M,, by L, and 1} M,, by L,, 13 M,, by M, the equa-
tions (1) become

SLE, = S {(R,, + L, ddt ) I

d .
+ M_d_t_ e (wo—wn)t jul }

52 Ea2 = 52 {(Ra + Lqut')ja‘l

+ L s g, |
t (116)

v

d
1 =
S {(-Ru+Lu dt)Iul

S'E, =0

+ M

dt e-—j(w —wi)t Ial }

S2E«u2=O

d v
S2 {(Ru + L, 77) L,

e (wo—wi)t [, 1

.+Mdt J

From the last two equations we have

M a
o = — Al pim-w. | 116
ul — _——_d__ € al ( )

Ru+LuW

M
Joo = — ——————— " @i (wo—wt o (117)
Ru + Lu _d_t

Substituting these in the first two equations of (116) we obtain

S’ Eal = S (Ra + La "dd—t’)
d . 7
i = i e |
_ ; ~ | Ia (118)
R, + L. {_dt — j(wo—w1) %
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I (119)

If E,; = Eo; e and E, = E, ¢/ the solution for I,; and I,
will be

_ Eal
I = 7 (120)
F _ Ea2
I, = A (121)
Where
Wo W1 M?

Zl = Ra +j'wOLa+

Z2 = -Ra +j Wo La
+ . wo(2w0— 'LU]_) M?
R2+ 2wy— w))2 L2

The impedances Z, and Z, will be found more convenient to use
in the form ’ ’

REFwrlp (Ru—jwi L)  (122)

{Ru—j (2wo— ws) L,} (123)

Zy= (Ra+ K2R) +jw (La— K2 L) + 2221 KR,

71_01
(124)
Zy = (Ra+ K R,) + jwo (La — Ko2 L,) — ”2007:—% K2R,
(125)

Where, as we will see later, K,® and K,? are the squares of the
transformation ratios between primary and secondary currents
of positive and negative phase sequence.

The last real term in each expression is the virtual resistance
due to mechanical rotation and when combined with the mean
square current represents mechanical work performed, the posi-
tive sign representing work performed and the negative sign
work required.

Thus, for example, to enable the currents .S? I,, to flow, the
Wo —

0T ¥ ke R, must be applied to

mechanical work 3 I,,?
2 Wy — Wy

the shaft of the motor.
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The phase angles of the symmetrical systems St I, S? I,
with respect to their impressed e. m.f., S' E,, and S? E,, are
given by these impedances so that the complete solution of the
primary circuit is thus obtained.

The secondary currents are given by equations (116) and (117)
and are

T = - R—J% Ly eiwT= K, e (126)
Iu? —_ R ]—'(-2 "Lz;_ 7—”;1) A)IL Ia‘l e_j(Z'u'a—w|)T= K2 Ia? ej(zwo-uh)'l‘
v T ] (2 Wy— W) Lo (127)

In the results just given, M is not the maximum value of
mutual inductance between a pair of primary and secondary
windings but is equal to the total mutual inductance due to a
current passing through the two coils W and V through the coil

U
A S
0 0
w \Y
C B
— —

Fi1G. 5

U as shown in the sketch Fig 5 and the winding “4” when 4
and U have their planes of symmetry coincident.

Where the windings are symmetrical the induced e. m.f. is
independent of the division of current between W and V, but
this quantity must not be used in unsymmetrical windings, or
with star windings having a neutral point connection so that
I is not zero. -

The appearance of M in this equation follows from the equa-
tion

Iu + Iv + Iw =0

so that .
-fu = - (It + Iw)

The power delivered by the motor is

Py =3 { o= Wi g 2R, — - ¥ Ko, Ru} (128)
w1 2 Wy — Wi
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The copper losses are given by
P, = 3 {I.* (Re + K:? Ry) + La2* (Re + K2* Ru)} (129)

The iron loss is independent of the copper loss and power out-
put. The iron loss and windage may be taken as
P, = Iron loss and windage . (130)
The power input as "
P, = Po+ P, + Py (131)

The mechanical power output is P, less friction and windage
losses. )
__r

2 wo — w,
X 107 dyne-cm. (132)

Torque = 3 { —z—Ll:_ K2I.®R,— Ko? 157 Ru}
1

The kv-a. at the terminals is

V P2+ Q:?= The effective value of 3 (Es1 Is1 + Eae L) (133)

This last result may be arrived at in the following way
S (Ea) = St Ear + S Eu)
~ R (134)
S (ja) = 52 Ial + Sl [a‘z

Since 21 ,, is conjugate to St I,;, etc.

The product of E,, and I,, is the power product of the two
vectors, S (E,) and S (I,) and omits the harmonic variation as a
double frequency quantity, the average wattless appears as an
imaginary non-harmonic quantity. '

Pl +J Ql Z (SO Eal j:zl + SO Ea2 fa? + Sl Eag ial
+ S Eay I.,) (136)

The S' and S? products have zero values, since the sum of the
terms of each sequence is zero, hence—

Pi+jQu = 3 (Bar Loy + Eoy In) (136)
VP2 + Qi* = The effective value of 3 (Ear Iy + Ean I5)  (137)

The solution for the general case of symmetrical motor opera-
ting on an unsymmetrical circuit is not of as much interest as
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certain special cases depending thereon. Some of the most im-
portant of these will be taken up in the following paragraphs.
Case 1. Single-Phase e. m. f. Impressed across-one - phase of
three-phase motor.
Assuming the single-phase voltage to be E,, impressed across
the terminals B C. The known data or constraints are

Ey. = 7 V3 (Bay — Ea) (138)

I.=0 5L =-1,
and therefore

Iy = — Iy (139)
Eal _ Eaz
Zy N " Zs
8 Zy
Ea = - - Ea 140
‘ 2 Z 1 (140)
Substituting in (138)
P 2 S
TV  Zi+ 2y (141)
= E,,c_ Z,

J vV 3 . Z+ Z,
and therefore

I _ . Ebc . 1
al ] \/3‘ Zl + 22 (142)
[ 1

1V i+ Z

Since fb = fbl + ibg = q? fal + a Iaz

fb=—Ic=-——Zl—EfZ—2 (143)
Py = (Fﬁ—g—lﬂ Kit Ru— 5o K2 Ru)I(f (144)
Pi4+3jQ =1 (Z,+ Z2) + Ps (145)

The power factor is obtained from (146) by the formula
cos a = Py (146)

VPE T 0r
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- Substituting from (142) in equation (126) and (127) of the
general case we obtain for the secondary currents

3 s 7 Ebc .
-[u = — K —_— . pJuwnt

1 J £Ha Z. ¥ Z, & adn
Lo = J K —pig ome

Many unsymmetrical cases may be expressed in terms of the
operation of coupled symmetrical motors operating on symmetri-
cal systems. This is invariably the case with symmetrical poly-
phase motors operating on single phase circuits. Since the
physical interpretations are useful in impressing the facts on
ones memory they will be given whenever they appear to be
useful.

Equations (141) and (142) show that single-phase operation is
exactly equivalent to operating two duplicate motors in series
with a symmetrical polyphase e. m. f. S! E,, impressed across one
motor, the other being connected in series with the first but with
phase sequence reversed, the two motors being directly coupled.

Case II. B and C connected together e. m. f. impressed across
A B. ‘

The data given by the conditions of constraint are

Eab = - Eca
. _ . (148)
Ey = 0 =7 /3 (Ey — E,»)
We therefore have
Fu = fup =~ L2 (149)
and
F —_ Eub )
[al - 3 Z1 (
Foo Ey r (160)
a2 — ﬁ2

The remainder follows from the general solution and need not
be repeated here.

(160) shows that a motor operated in this manner is the exact
equivalent in all respects to two duplicate mechanically coupled
polyphase motors, one of which has sequence reversed, operating

in parallel on a balanced three-phase circuit of e. m. f. S! %
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The secondary currents follow from substitution of (160)
in equations (126) and (127) of the general case.

Case III. B and C connected together by the terminals of a
balance coil, the impressed e. m. f. E ., applied between A and the
middle point of the balance coil. Resistance and reactance of
balance coil negligible.

The data furnished by the connection in this case is

o . I,
Ly =1 = — 5 (151)
and therefore
) L ., L
f B ]a — a 2 — a 2 B Ia
al — 3 - 2
. . I,
Ia2 = Ial = 2
We therefore have
Eal - _ZI2IG }
(162)
- Z, I, f
Faz = —5 )
we have
Eab = ] \/é— (a Eal — a’ Ea2)
I, .
= 74/3 0 (a Zy— a® Zy)
y = I,
Eve = j V3 5 (Z1— Z,)
2 _ = Ebc )
Ead = (Eab + 2
_ I (163)
=743 2“ {(G+%)Zl— (a® + %) Zs}
=—3L(Z+ 2y )
and therefore, .
Lo=—13 2 (164)

Z, + Z,
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Py =3 {M Kp— 20— @ K:}} IR, (166)
wy 2 Wo — Wy
Pl +J Ql = % 102 (Zl + Z2) + PF (156)
cos @ = L_l__ (1867)
- VP 24 02
i3 100 — || Speed
%, =~ — Efficiency ;
>
:21 80 H . ~Power Factor Iﬂput ><
s ,
o -
e 60 yd ocﬁ/%
S TS
2 : q@:? / =
2 40 /g d 400"?
u o
& LTS o §
= i ‘
3 A B A/&/ 1 00
¢ 20 e -
z A : >
% 0// K/j/ 0 =
o ——/2000 3000 4000 5000 s
1000 /~"MOTOR TORQUE ]

F16. 6—CHARACTERISTICS OF THREE-PHASE INDUCTION MoOTOR—
BALANCED THREE-PHASE

Evidently (1566), (166) and (167) are identical to (144), (146)

and (146) if I, is equal to I, + —\@—

the value of E.y =

2

5

This will be the case if

l-/-?l times that of E,. The total heating of
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the motors will be the same in each case but the heating in one
phase for Case III will be one-third greater than for Case I.

P

i 100 <] Speed | |

73 A1 Efficiency

5 // - Power Factor

= 80 ,

= / )

3]

& /1y

o 8 4

5 Vi e

3}

T 4 - Power [Factor 400%

§ / /\ -Eflficielnqﬂ ;
----- ’ K. V.A. :

g 20 f/ /—/ Input— 200:

Z AP~ < 2

o “K!W. Output | | z

(] 0 T 1 0 <

o 1000 2000 3000 4000 5000 >

MOTOR TORQUE x

F16. 7—CHARACTERISTICS OF THREE-PHASE INDUCTION MOTOR—SINGLE-
"PHASE OPERATION —ONE LEAD OPEN

This method of operation is therefore, as far as total losses,
etc. are concerned, the exact counterpart of two polyphase
' N

o
w 100
i ~ || Speed
w
> )
S 80
"l
E 7
& 60 7\« K.|V.A.
— -
§ A= 'Powex;lFact{or 2
u- 40 /”’ HK/|V. A. Input 4005
g LA 3
=z —~t~Efficiency — b
g / - 200 <
e 207 I L
& 2 "K, W.Output g
£ NI A A B A A
& 0 <
1000 2000 3000 4000 5000 6000 =
MOTOR TORQUE x
F16. 8—CHARACTERISTICS OF THREE-PHASE INDUCTION MOTOR—

SINGLE-PHASE OPERATION

motors connected in series with shafts mechanically connected,
one of which has its phase sequence reversed.
Figs. 6, 7 and 8 show characteristic curves of a three-phase
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induction motor operating respectively on a symmetrical cir-
cuit, according to Case I and according to Case II.

Synchronous Machinery

THE SYMMETRICAL THREE-PHASE GENERATOR OPERATING ON
UNsYMMETRICALLY LoADED CIrcUIT

The polyphase salient pole generator is not strictly a symmetri-
cal machine, the exciting winding is not a symmetrical polyphase
winding and it therefore sets up unsymmetrical trains of har-
monics in exactly the same way as they are set up in an induction
motor with unsymmetrical secondary winding. These cases will
therefore be taken up later on. A three-phase generator may
however be wound with a distributed polyphase winding to serve
both. as exciting and damper winding and if properly connected
will be perfectly symmetrical. Such a machine will differ from
an induction motor only in respect to the fact that it operates
in synchronism and has internally generated symmetrical e. m. fs.
which we will denote by S! E,,, S? E,; the negative phase seé-
quence component being zero; an e. m. f. S° E,, may exist but
since in all the connections that will be considered there will be
no neutral connection its value may be ignored. If the load
impedances be Z,’, Z,’ and Z,’ they may be expressed by

Za' = S Za' + S' Zat' + §* Zao'

and the equations of the generator will be

St Eal = St {(Ra + La dit) jall + ZaO’ Ial’
+ Za‘ll In2l + M dt ej'wot Iull }

O = SZ {(Ra + La ‘diiT) ia‘l + ZaOV Ia'z'
¢ (16L)

+ Zall Iall + M ddt e—jwol ju2l }
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The last two equations give

ML
dt
Iul' = - d e—Jwt al
Ru + Lu 7t_
ML
, dt o
Lo = — —————d—ei’“ I,
R, + L,
d!

(169)

which on substitution in the first two equations of (168) give

the equations

( d
| Ra + L, ft— d! ?i'
+'Zal)l [al +la’ Ia' bal

L' + { Re + L. %

allal <| « a dt

!

M ddt ('dd—t +i 7‘°))

- d ffcﬂ +Zao Ia2 =
Ru+Lu(W+ju'o)

or if | . ‘
Eal = Eal eJwol

(160)

(161)

the impedances Zqo, Za1, Za2 become ordinary impedance for an

electrical angular velocity w, and equations (160) become
(Ra +jw Lo + Zao") Lot + Zaa' Io'» = Ea
Za' L + 1 Zao' + (R + K22 R +j 2 w0 (La— K2* L) r
—3K2R} I =0 )
It is apparent that in the generator the impedances

Rs + jwoLe = Zy

(162)

and {(Ra + K22 Ru) +j 2w (La— K2* L) — 1K2R,} = Zy’
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take the place of Z, and Z, in the symmetrical induction motor
operating on an unsymmetrical circuit, and we may express
equation (162)

(Zao’ + le) fal' + Za2' Va2, = Eal

. (163)
Zo' Iy + (Zao' + Z3') Ia2'= O
which gives
For— Zal' y o
1a2 - Zao + Zg' Ial
Ial, = Eal Z 1; Z 2I
(Zao' + Zy') — T T 24
Or in more symmetrical form
= C Lo + 2y E ]
ol (Zao! + Z\") (Zao' + Zy') — Zar' Zay' ! (164)"
o
I“o' = - > 7, al Ea
: Zao' + 20) (Zad' + Z2) = Zat Zar' ')
From (169) we have for the damper currents
I,/ =0ifR,> O
Fu’ = — K2 Ioo €721 ( (166)
, > s 2 Wo M
W here Kz =7 R,, + 7 2 Wo L,, J

A particular case of interest is when ihe load is a Synchronous
Motor or Induction Motor with unsymmetrical line impedances in
sertes—Equation (163) becomes
(Zao' + Zy' + Z)) Ty + Zay' Ly’ = Eg

Za o' + (Za' + Z2' + Zy) Iy’ = O
Zao’ + Z2I + Z2 5
o e e T2 B, 16
Cat FZHZ) Lo+ 2 2) = Zan 2 o (166)
— Zal
(Zad'+Z1'+2Z)) (Za'+ 22" Z2) — Zay Zas

1al1=

-
~al

Ia?l

An important case is that of a generator feeding into a symmetrical
motor and an unsymmetrical load. let the motor currents be

’
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I, I, I., those of the load I,’, I’, I.’ and the load impedances
Zs', Zv', Z.'. The equations of this system will be

St Ear = SYZy Iy + Lat') + Zoo' I’ + Zao' [0}
St Ear = SYZy (T + T) + Z1 L)
S {Zs" (Tar + Tar") + Zao' Tar + Zat' Lo’}
S Zy' (Laz + L) + Z, a2}

S50

S0

p (16D
|
J

Or, omitting the sequence symbols and re-arranging—

Eal =leial+(zl’+za01) ial'+Za2’ Ia'zl }

Eo=Zv+2Z) I+ Zy Lt :
B . b (168)

O =2y los+ Zat' I + (Zy' + Zu') Ly

O = (Zo' +Zs) Lax + Zy' o' J

These equations can be further simplified as follows:

0= (Z‘.!’ + Z‘.!) ia'.! + Z'.!'ia‘ll I

. o . |

() =_Z2102+Z"111al'+Z41()11a‘l' |
. . (169)

O = - Z} Ia] + Zuﬂ' [n()' + ZaQIIn'Z’
Eal = (Zl'+Zl) ia1+Z|'fn|' J

A set of simultaneous equations which may be easily solved.

THE SINGLE-PHASE GENERATOR IS AN IMPORTANT CASE OF THE

THREE-PHASE GENERATOR OPERATED ON AN UNBALANCED LoaD
Let the impedance of the single-phase load be Z and let us

suppose it to be made up of three star connected impedances

s z
la—dA,+——2
L, Z
Zy = 5
L. Z
AC—2
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the value of Z, in the limit being infinity. Then we have
oo VA ’
Au(l - Zz + T

(170)
Zull = Zz I?
Za‘),’ = Zz J

Equation (164) in the limit when Z, becomes infinite reduceg
to

]“ ’ Eal

242+ Zy
; B, (171)
S R X X

The single-phase load being across the phase B C, the smgle—
phase current I will therefore be equal to I, or

- JV3E, *
Z + Zl' + Z2' (172)
I ..__Eb'.____
Z+Zy+ Zy
iu] = O lf Ru > 0
iu'.! = - j ‘—1‘:. kg f eJuol )
V3 (173)
K
iu, = — 2 1 Jwol
2 \/3 e
I.» is double normal frequency
Pl + J Qx =312
Po+jijO =302 +2Zy (174)

(P+jQ) + (Pu+jQu) =3E.(I+ 1D
In the case of the generally unbalanced three-phase load
P14+ 01 =3 {(a* + Ia2®) Zao'
+ Loy Tar Zoy' + oy Loy Za')
P+ jOu=38{l.*2y + L.* Zy} (176)
(P+7Q)j(Pu +j0u) = 3Es (Tar + Iv)
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When the generator has harmonics in its wave form equations
(162) must be written

(Ra +ija + Za(]’) jal’ + Za2, Ia2/ = E(H
Zull Ial, + {Za0,+ (-Ra + K22 Ru) ? (176)

+j2w(La— K2L,) — a2 Ry} Iy’ = By |

Where E,, is finite, E., is zero and vice versa, the frequencies
being different in each case, we have therefore a solution for each
frequency depending on the phase and amplitude and phase se-
quence of the e. m. f. of this frequency generated. Of course
the valugs of Z,’ and Z.’ change with each frequency on account
of the change in the reactance with frequency, and a value must
be taken for w conforming with the frequency of the harmonic
under consideration.

Symmetrical Synchronous Motor, Synchronous Condenser, Etc.

As in the case of the generator, the synchronous motor has two
impedances, one to the positive phase sequence current of a
given frequency and the other to the negative phase sequence
current of the same frequency. But, since there is no quantity
in the positive phase sequence impedance corresponding to the
virtual resistance which indicates mechanical work in an induc-
tion motor, its equivalent is furnished by the excitation of the
field. Let us denote the e. m. f. due to the field excitation by
S! E,,’ assuming it to be for the present a simple harmonic three-
phase system. Let P, be the output of the motor which will
include the windage and iron losses assumed to be constant.
Then for the synchronous motor on a balanced circuit of e. m. f.
St E,, we have

S1 By = S T (R +jwLy) + Ea’} 177

S . , P .
B la =5 { Lt Ry 4wl + 50 -9 ) am)
Where Q, is the imaginary part of the product, Eu' I, (178)
reduces to
P,
3
Where cos « is the required operating power factor. Solving
for I,

Eal Ial cos a = Ialz Ral + (179)
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_ Egcos a { _4RS Py }
I, = —oRT 1+ V 1-— SEcof (180)

;= cosa 4 Ra'Po }
lov = B —5 1= {liVI 3 E.if cos® a
(cos a — j sin «) (181)
The apparent impedance of the motor is
2Riseca (cos @ + jsin @) (182)
12V - AP
B E2cos o

and

51 B cos a { 4R, Py }
Eq Ea [1 2R 3 1 + /\/ 1 3 E 2o a E. % cosf o

(cosa—jsina) (R +jw La’)] (183)

The same equations apply to the case of the synchronous
condenser with the difference that the mechanical work is that
required to overcome the iron and windage losses only. ’

If we take

E. = E4 (cos « + jsina) et = (4, -}-j B,) eiwt
. , (184)
Ea' = (A + j By) efwor
we have
I = f; <1 YV %ﬁi&) i (186)
4, = i2~<1i\/1- 4§A12D°)efw (186)
By = {R- LA (1ivl_ AR Po) ) s
(187)

Since @ may be a positive or negative angle, the sine may be
positive or negative for a positive cosine, and therefore the power
factor will be leading or lagging accordingly as B, is negative or
positive respectively. The double signs throughout are due to
the fact that for any given load and power factor there are always
two theoretically possible running conditions. However, since
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we are concerned only with that one which will give the max.
operating efficiency, that is the condition that gives I,; the lesser
value, for a given value of P, the equations may be written

4 R,/ P
fa1= 2_R1 ( /\/1— 3A20) ,j wot
A/ = <1+\/1— 2R Te) e (188)
’r _ JYUQL A] _ 4:R .Po }
By = {Bl o RS ( /\/1 34,2 )

And corresponding values for (180), (181), (182) and (183) may

be obtained by omitting the positive sign in these equations.
Another condition of operation is obtained by inspection of -

(180), due to the fact that I,; must be a real quantity

4 R, P,

—3E—2c0_s2—(; must be > 1 ' (189)
al

this is the condition of stability. In terms of (184) it becomes

4 R, P,

1

The same conditions apply to the synchronous condenser, the
total mechanical load in this case being the iron loss and windage
and friction losses.

. Proceeding now to operation with unbalanced circuits having
sine waves the motor also having a sine wave. In addition to
equation (177) we shall have

2 By = St Zy Iy (191)

The mechanical power delivered through the operation of this
negative phase sequence e. m. f. is given by Py where
Pu= -8 L 52 (192)
this quantity must therefore be subtracted from the value of P,
in all the equations in which P, appears when unbalanced cir-
cuits are used in connection with equations (177) to (190) inclu-
sive. These equations, however, give the conditions for main-
taining a given mechanical load and a given power factor in the
positive phase sequence component, but in practice what is re-
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quifed is the combined power factor of the whole system, or the
conditions to give a certain combined factor while delivering a
given mechanical load; this may be obtained as follows:

The negative phase sequence component is a perfectly definite
impedance and is independent of the load, and therefore the zero
frequency part of the product E,s I, may be set down as

= 2 P
Ea2 Ia2 = —32

+i-2 (193)

we have also for the positive phase sequence power delivered

Py Py

(Al +jBl) Ial = Ig]Z Ral —+‘ 3
| 4w Ia L + ByY) L, (194)

And the power factor is given by -

LB+ 2
tan ¢ = —p— (196)
IalAl + 32
From (194) we have
Ay Iy = I.* Re' + ‘;" - -% (196)
Bl = w Ial Lal + Bll (197)
A2 + B2 = Eq? (198)

The simplest method of solving these equations is by means
of curves. Taking arbitrary values of I,;, B; and 4, are chosen

consistent with (198) so as to satisfy (195), - A and By are

then obtained from (196) and (197). If there are harmonics in
the impressed e. m. f. but there are none in the wave form of the
machine, the machine will have a definite impedance to the
positive and negative phase sequence components of each har-
monic, so that there will be a definite amount of mechanical
work contributed by each harmonic which must be subtracted
from the total work to be done to give the amount of work con-
tributed by the positive phase sequence fundamental component,
the equations will be identical to (193), (194), (195), (196),
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(197) and (198), if we take Py to mean the total mechanical
work done by the harmonics both positive and negative phase
sequence and P, and Q. to represent the products

E (nEal nja] + nEaQ njaZ)

the zero frequency part only being taken into account.

When harmonics are present both in the impressed wave and
in the generated wave, the problem becomes too complicated to
treat generally, but specific cases can be worked out without
much difficulty.

Phase Converters and Balancers

The phase converter is a machine to transform energy from
single-phase or pulsating form to polyphase or non-pulsating
form or vice versa to transform energy from polyphase to single-
phase. The transformation may not be complete, that is to say,
the polyphase system may not be perfectly balanced when sup-
plied from a single-phase source through the medium of a phase
converter. Phase converters may be roughly divided into two
classes, namely—shunt type and series type.

INpucTiION MOTOR OR SYNCHRONOUS CONDENSER (OPERATING
AS A PHASE CONVERTER OF THE SHUNT TYPE TO SUPPLY A
SYMMETRICAL INDUCTION MOTOR OR SYNCHRONOUS
MoTtor

Let Z, and Z, be the positive and negative phase sequenée
impedances of the motor, Z, Z, those of the phase converter.
Let S' E,; and S? E,, be the positive and negative phase sequence
components of the star e. m. f. impressed on the motor as a result
of the operation. The single-phase supply will be one side of the
delta e. m.f. S E,. which has positive and negative phase se-
quence components S! Ey.; and S? Eye the single-phase supply
being Fye = Eper + Epeo.

The value of Zy may be considered fixed for all practical pur-
poses and since in the induction motor phase converter the speed
is practically no-load speed, Z' is practically the no-load imped-
ance plus a real part obtained by increasing the real part of the
no-load impedance by the ratio of the normal no-load losses to
these same losses plus 3 the secondary losses due to the phase
converter currents. The latter may be calculated roughly as
even a large error in its value will have an inappreciable effect
on the actual results. We have therefore
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= . Ebc
StEy = — §1j 2%
1 J V3
r= w F:bc‘z
St Ege = S —==
- V3
F Ebcl
St Ly = — §1j 2
1 1 \/3 le
¥ . Ebcl
St Ly = — Stj—2
‘ V32,
¥ Ebc2
S?% I = —
* V3 Zy
F X Ebc2
S% I = 2 —
: V37,

In the common lead of motor and converter we have
fal, + ja2l + fal + jaZ =0
or, substituting from (200) and (201)

1 1 - 1 1
B (g7 + 7)) = B (g + 27)

1 1
Ebcl - ZZ, + Z2
Ebc2 l .___1
zr T 7,
1 1
. “Z, + Z, -
Ebcl = Ebf
T L) (e )
Z. T Z7 ( Z: T
R
7
Ebc2 Zl Z Ebr

— 1
- 1 1 1 1
(7T+77)+(Z+77>

687

(199)

(200)

(201)

(202)

(203)

(204)

(206)

(206)

which give the complete solution for all the quantities required
with the aid of equations (200) and (201). For the supply

current
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I = Lo + her + Lo’ + Do’ ]

S e = St Loy + S Ty r (207)
S Eye = St Byt + S? Epeo J

Pi+jQ=E,. [T (208)

In order to obtain a perfect balance we may consider the addi-

. . E. . . .
tion of an e. m. f. §% \/Ei; in series with the phase converter

whose value must be a function of the load and the phase con-
verter impedances, and therefore equation (201) will be replaced

¥ . Ebcg . Ez2 )
S? I = §? _ 209
: (‘7 V3 zy N3 zy (209)
¥ . Ebc
5‘2 ey
J V'3 Zs

and since the balance is perfect Es is zero, and therefore

5 %7‘7% = 2y Ty (210)

An e.m. f. equal and of opposite phase to the negative phase
sequence drop through the phase converter is required to pro-
duce a perfect balance.

Carrying out the solution in the same manner as in the imper-
fect converter, we obtain

1,1 L

Epg = Z;_____ZL Ey. — __L__Eﬂ (211)
1 n 1 1 n 1
Zs Zy' Zy 7'

and since Ey.. is zero and E.; = E,. the single-phase impressed
e. m. f., we obtain

. Lo 1 1
Ea = 24 (- + 27) B (212)
and therefore from (210)
1 1 E,.
"= 2+ =) == 213
$ Ly =55 (5 + 77) o (213)
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Ebc

Sty = — Stj == 214

1 J \/g-Zl, ( )

S Ie =0 (216)
F . Ebc

Sl Ia = - Sl —_— 216

Figs. 9, 10, 11 and 12 are vector diagrams of some of the princi-
pal compensated shunt type phase converters. There will be no

¢ Ecx \Fil; be
be
F16. 9—VECTOR DIAGRAM OF SHUNT-TYPE PHASE CONVERTER OPERATED
FROM TRANSFORMER SO As To DELIVER BALANCED CURRENTS

Terminal voltages of phase converter SE‘.,
Terminal voltages of motor S'E,;
Nega ive phase sequence e.m.fs. in phase converter S (OAQ)

difficulty in following out these diagrams if the principles of this
paper have been grasped.

The Phase Balancer is a device to maintain symmetry of
e. m. fs. at a given point in a polyphase system. It may consist
of an induction motor or synchronous condenser with an auxiliary
machine connected in series to supply an e.m. f. always pro-
portional to the product of the negative phase sequence current
passing through the machine and the negative phase sequence
impedance of the balancer. It therefore has the effect of an-
nulling the impedance of the machine to the flow of negative
phase sequence current. Thus, in a symmetrical polyphase
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network, where we have an unbalanced system of currents due to
certain conditions

v

SI, =81, + 81, (217)

If a balancer be placed at the proper point the component S? I,z
will circulate between the loads and the phase balancer, the other
component S' I,; being furnished from the power house. On the
other hand, if there be a dissymmetry in the impedance of the
system up to the phase balancer, the latter will draw a negative
phase sequence current sufficient to counteract the unbalance

Fi16. 10—VECTOR DiaGRAM SHOWING RELATIONS BETWEEN MOTOR
TERMINAL E.M.F'S., CONVERTER TERMINAL E.M.FS., AND SYMMETRICAL
GENERATED E.M.F'S., SAME CONNECTION AS FOR FIG. 9.

Negative phase sequence drops in phase converter S?Zst ] 0
Conjugate positive phase sequence e.m.fs. SY(ABC)

due to any symmetrical load by causing the proper amount of
negative phase sequence current to flow to produce a balance.

The balancer may be made inherently self-balancing by insert-
ing in series with it a machine which is self-exciting and is able
to furnish an e. m. f. equal to the negative phase sequence imped-
ance drop. The combination thus has zero impedance to nega-
tive phase sequence currents. If in the neighborhood of a phase
balancer the loads have impedances

SZa = SOZaO + Sl Zal + SZ Za2
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The equations of the system are

St Eal =35 Zal] jal + St Za2 ja2
) (218)
S2Ea2 =0= S22a01a2+52ZalIal

The currents in the phase converter are

-

Eal
Z!

— 82T, and S

v, A,
Ea Ea

T
2

F1G. 11—VECTOR DI1AGRAM OF SHUNT TYPE PHASE CONVERTER SCOTT
CONNECTED WITH COMPENSATION BY TRANSFORMER TAPS
Terminal voltages of converter O'4 and B'C!
Terminal voltages of motor S'E,;

The solution of (218) gives S? I,, and S! I,;, the former of
which are the phase balancer currents. The solution is

¥ ZaO )
Iy = 22— F,

! ZaO2 - Zal Za2 ! f (219)
fu2 = Zal Eal J

" Za? — Zagr Zay

The phase balancer is a voltage balancer and will maintain
balanced e. m. f. for any condition of impedance, and if the im-
pedance of the mains is unsymmetrical it will draw a sufficient
amount of wattless negative phase sequence current through
these mains to produce an e.m.f. balance at its terminals.
Hence the complete solution requires consideration of all the
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connections in the network between the supply point and the
balancer. Two equations for each mesh and connection are
required, one of the positive phase sequence e. m. fs. and the
other of the negative phase sequence e. m. f., and these equations
may be solved in the usual way.

Series Phase Converter. In discussing the various reaction in
rotating machines we have made use of the terms ‘‘positive phase
sequence impedance” and ‘‘negative phase sequence imped-
ance.”” These terms are definite enough when dealing with rela-
tions between machines whose generated e. m. fs. all have the

F16. 12—VECTOR DIAGRAM OF SHUNT-TYPE PHASE CONVERTER WITH
AUXILIARY ROTATING COMPENSATOR TO EFFECT A PERFECT BALANCE

Terminal voltages of phase converter S Eg'
Terminal voltages of motor S'Ea1
Terminal voltages of compensator S?2E 40

same phase sequence, but require further definition when we
are dealing with relations between machines whose e. m. fs. have
different phase sequence. We shall retain the symbols Z; and
Z, for the valtes of the positive and negative phase sequence
impedances, depending upon the sequence symbo'! S to define
whether these impedances apply to a negative or positive phase
sequence current. Thus, the phase sequence of the currents and
e. m. f. will be defined by the apparatus supplying and receiving
power and the impedances of the transmitting apparatus will be
defined in relation to these currents. As an example a motor
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series connected in counter phase sequence relation in a circuit
and driven in a positive direction will have impedances

positive phase sequence Z,
(220)

negative phase sequence Z,

Wherg an auxiliary machine is defined as being of negative
phase sequence relatibn to other machines, it will have imped-
ances as given above to the positive and negative phase sequence
currents passing through the other machines.

A single-phase transformer winding tapped at the middle point

S

F16. 13—VECTOR DI1AGRAM OF SERIES-TYPE CONVERTER.

No Loap E.M.F's. ACROSS MOTOR TERMINALS SIE,,I

No Loap E.M.F's. ACROss CONVERTER TERMINALS SZE,,g
SINGLE-PHASE E.M.F's. 2K .
E.M.F.ACROSS TERMINAL OF MOTOR UNDER Loap E EE, =
E.M.F. ACROSS TERMINAL OF CONVERTER UNDER Loap E.FEiE,

may be regarded as an unbalanced three-phase system where
E4=0Eb:; +E3Ec=“E8

2 E, being the single-phase e. m. f The system may be repre-

sented by the equation

SEa=SlEal+SzEa2

I
<.
B e

where E,, =
(221)

-

Ea2=_j

3
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If, therefore between the single-phase source of power and
the load we interpose a polyphase machine with e. m.f. — §?
E,,, we shall have at the load terminals the e. m.f. St E,;.
If we use an induction type phase converter it will have imped-
ances to motor currents as follows

To positive phase sequence Z,’

(222)
To negative phase sequence Z,'
we therefore have the relations
St Ea = St I (Z1 + ZY) (223)
S?Epy = S8 Iz (Zo + ZY) (224)

If the converter is doing no mechanical work, Z,’ is large com-
pared with Z;’ or Z, and therefore the component of negative
phase sequence is small in the motor. The value of Z,’ depends
upon the slip of the phase converter which will depend on the
mechanical load it carries as well as on the load carried by the
motors. Approximately the load currents due to the motors
produce the equivalent at the phase converter of a mechanical
load equal to one-half the rotor loss of the phase converter due
to these load currents. Substituting the values given in (221)
for St E,; and S? E,,, we obtain

-

E .
it = St n (Z) + Zo
7 \/3 1 ( 1 2) (225)
Y ———\’fé_ - ST (Zo + ZV) |
E
St fa = St — ¢
! T V3 (Z + 2)
- (226)
. S2 T, = Es

I V3 (2. + 2))

If instead of an induction type phase converter a synchronous
phase converter is used an e. m. f. of negative phase sequence S* E,.
the generated e.m.f. of the phase converter must be introduced
in equations (224) and (226) and the value and phase of these
e. m. fs. will depend upon the load on the phase converter shaft as
well as the load carried by the motors. The equations will be
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SUE, = St I (Zy + ZY) (227)
S? Bay = S I,y (Zo + Z¢) + S E.o' (228)

or

St Es StIa (Zy + Zy :
J\/3 1(1 2) (229)

i

I

-8 —= S? Ia2 Zs+ Zy) + SzEcﬂ,

\/3

The last member of equations (229) is the equation of a syn-
chronous condenser. Assuming its windage, iron loss and in-
creased losses due to secondary reactions to be Py, we have by
equation (160) of the Section on Synchronous Motors

T lacosa = L (R + RY) + 5 (230)
Let .
lIoo = as + j b (231)
then (230) becomes

53: @ = (a + b22) (Ry + R

(232)

.

Of the two quantities a» and b,, b, alone is arbitrary and depends
upon the excitation, a, will depend upon the value of b, and also
upon the losses. Solving therefore for a, in terms of b;, we have

Ay = — E. { 1
2V3 (R, + RY)

A iR TR B R T RO TP (gag)

Since b, is arbitrary we may now determine cos a; =
az
Va + b7
will be by (181) of Section on Synchronous Motors

COS g
5272‘"52[1 V3 2R F R {1

_A_ 2@+ R Py } efa] (234)

E? cos? ay

and the value of I, in terms of the impressed e. m. f.
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The effective value of I,» in terms of the effective value of E, will
then be

Ia2 =

E, cOoS sy _ 4R+ RY) Py }
V32 (R + RY) {1 Vl E 2 cos? a,
(236)

and since the component of the e.m.f. generated in phase with the
current is determined only by the magnitude of I,» and the
motor losses, if we define its value by 4, the quadrature
component being By’ we shall have

Ay = Eo cosan (1 A1 AR AR Po) (236)

V'3 2 E 2 cos? ay
and
E, : L Ly -
By = — V3 sin ag — ——ui—(—%}—z—) (237)
- - L {sin «a
V3 *
I 3w (L + L) cos Qg (1
Py 2 (R, + RY)
A/, _ 4R+ R Po)}
Vi AR ERT (238

and therefore we have

B =—i o5 [ (1 A1 iR T RO P

2 E2cos? ae

o 3w (Ls + Ly) cos as [
j {sin oo+ SO (1
. _4(R2+R1')Po)}]
Vl E % cos? ap (239)

The impedance of the phase converter to the flow of negative
phase sequence current is

2 (R: + RY) sec «

1-A1_+t@R: +R) Py (240)
E 2 cos? a
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The balance will be at its best when I, is a minimum with
cos aas theindependent variable. This will be the case when
cos a3 is unity; that is to say when b, is zero.

Recapitulating the results given above, we have for the general
case taking the single-phase e. m. {. E, as reference

Sty =8 — s 241
T VE @+ ze) (241)
52 jaZ = - ] ((12 + ] bz) _ (242)

where b, is arbitrary and
as = E. { 1-—-
T2 V3 (R + RY)

4 (R; + RY) {3022 (R + RY) + P
_/\/1_ ( 2 1){E‘22 ( 2 1) 0} (243)

Since b, is arbitrary cos a; is determined by

cos ap = —-————\/m (244)

we may express I,; in terms of E, by

. _ . E, COS Uy {
Sle==S1 08 @+ Ry !
_ _4(R2+R1')Po} -
e B ood o i (246)

The effective value of I,; will be

E, cos iz { 1
V3 2(R:+ Q1)

_ A _ AR+ RY) P, 0} (246)

E? cos? ap

Iy, = Vag? + b2 =

If A’ and B,’ are components of E,,’ these being the generated

e. m. f. in phase and in quadrature with the current I,, we shall
have

Eu' = —j (4 4+ j BY) C o (247)

and A," and B,’ will have the following values
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Ay = E, cosa; (1+V1_ 4(R2+R1')Po) (248)

V3 2 E 2 cos? ap
Byt = — —\—/Egé {sin a;
4 3w (L + L) . Cos Qg (1
Po 2 ( RZ + Rl’)
_ _4(R2+Q11)Po}
/\/1 E 2 cos a? > (249)

and E,,’ expressed in terms of £, becomes

v

E, [ cosa, ) _ 4 (R: + RY') Py
V3 [ 2 (1+ Vl E . costa, )

EV2'=°“]‘

—-j{sinoq—}- 3w (Ly + L') cos ay (1

2 Py (R: + RY)

A LR T RD Pa) }] (250)

E 2 cos? ay

The effective impedance of the phase converter to the flow of
negative phase sequence currents is

.

2 (Ry + RY) sec as L. 251
L \/1 1R T R P (cos as — 7 sin ap) (261)
E2 cos? o

or

E} cosay _ 4 (R + RY) Po) i
P, 2 <1 + Vl E 2 cos?® as e (262)

In the above equations cos «» is arbitrary or b, may be con-
sidered arbitrary and cos a. will then be determined.

Minimum Unbalance is obtained when cos «, is made unity or
when b, is made zero in equations (241) and (262).

Perfect Balance is obtained by driving the phase converter
mechanically so as to supply the mechanical power P, from a
separate or symmetrical source. Under this condition a. and b,
both become zero when cos @ is unity. The only equation of
the system is then (241).
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Currents and Power Factor in the Single-Phase Supply Circuit.
The e. m. f. is 2 E, and the current supplied is

L— 1.
o= Dol
IR A N A
= 5 + 3 (263)
If we take
St Iy =S8 (a1 — j by) (264)
In— 1. V3 :
Pt = - (@ = by (266)
Similarly, since under the same conditions
S [y = — S5 (a2 + 7 bo) (256)
Lk fa . ‘/23 (a2 + j bo) (267)
and therefore
V3 .
I, = 5 {(ar + a2) — j (b — b2)} (268)

where ay, b), a,, b, are to be obtained by means of equations
(243) to (264). The single-phase power factor is given by

(269)

of these quantities a, is usually the smallest and its value may be
obtained approximately by assigning to b, a value which will

. b —
make the ratio —10—[)—2—
1

equal to tan 6, and obtaining the

corresponding value of a; by (242), the value of b; may then be
recalculated from (269) by substituting the tentative value ob-
tained for a,. This procedure may be repeated until sufficient
accuracy has been obtained.

SINGLE PHASE PowEeER FAcCTOR IN SHUNT TYPE PHASE
CONVERTER

The simplest procedure is to obtain a curve of admittances
for varying excitation of the converter and plot the power factor
obtained by varying the admittance with a fixed load. The true
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and wattless power is obtained easily by means of (208) whether
the system is balanced or unbalanced.

Figs. 14, 15, 16 and 17 are vector diagrams of several
methods of using phase converters to supply a balanced 3-phase
e. m. f. to a symmetrical load such as an induction motor. The
diagram are all based on a main machine having the same nega-
tive phase sequence impedance and the system in each case is

Fic. 14

SINGLE -PHASE IMPRESSED E.M.F. = B'C’

Mo1or E.M.F. = BC . .

NEGATIVE PHASE SEQUENCE E.M.FS. EpEpEe .
CONJUGATE POSITIVE PHASE SEQUENCE E.M.FS. ,,IE“E“
PHASE CONVERTER TERMINAL E.M.F. AB'C’

delivering the same amount of power at the same voltage and 3-
phase power factor without supplying any wattless power. It
will be noted that the scheme Fig. 14 has the lowest single
phase power factor, Fig. 16 the highest and the rest arcing alike.
It may be remarked, however, that with the shunt type schemes
adjustments can be made for power factor correction which will
result also in better regulation.
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APPENDIX I

Cylindrical Fields in Fourier Harmonics
When we have a diametrical coil around a cylinder concentric
with another cylinder which forms the return magnetic path,
and the length of the gap is uniform and the coil dimension very
small, the field across the gap takes the form of a square topped

A

Phase

Fic. 15
SINGLE PHASE IMPRESSED E.M.F. = B'C’
Mortor E.M.F. = BC
PHASE CONVERTER E.M.F. = B"C" _ .
NEGATIVE PHASE SEQUENCE E.M.F BaoFpoFy o
CON{|UGATE POSITIVE PHASE SECUENCE E.M.F. E'Fy E,,
Puase CONVERTER TERMINAL E.M.F. AB"C”

wave, which may be expressed in the form of a Fourier series
with the plane of symmetry of the coil as reference plane, and its
Fourier expansion is

@=‘%(coso—%cos30+13cos50—. ) @)

where B is the average induction in the air gap.
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Phase | Auxiliary
B nverter Balancer MomijB
A )

VAVAVAY)

Ly

F16. 16—PHASE CONVERTER WITH AUXILIARY BALANCER.

Single Phase

a

X C =
Cor,tverter N,{ﬁfi

O%:J—?
Y B
Fic. 17

SINGLE PHASE IMPRESSED E.M.F. = XY

MoTOR E.M.F. = BC

THERE IS A 2 TO 1 TRANSFORMATION OF E.M.F. FROM SINGLE-PHASE
T0 THREE-PHASE IN THIS CONNECTION
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With pitch less than m the curve will have a different form, the
amplitude being greater on one side of the plane of the coils than
on the other, the areas of each wave will remain the same and
second harmonic terms will appear. Let 2 m, 7 be the new pitch
then the average amplitude of the induction will be the same as
before, namely B, and the value on one side of the coil will be
2 (1 — mo)B and on the other side 2 m, B so that the total flux
will be the same on either side. To obtain the values of the
coefficients we have

mow 2 T

2(1—mochosn0d6+2moBf cosn0d0=—g—A,.

mow

mow 2r
sinn 0i|—- 2moB|:L sinn 0] =T 4,
n 2

0 mow

2(1~m0)13[3Z

A, = 4B {(——-———1 o) + o sinnmo‘lr}

T n
4B 1 .
A, = —1-r— <Ts1nnm0 7r1) (2)
Let2mom = 2 m, then (1 — my) m=% 7 and
2vV3B 1 1 1
® = — (cosﬁ+—2—cos20—zcos40——gcos50
+lcos70+lc0580—icos100 > 3)
7 8 10 o

A general expression for ® where B is the average of the posi-

tive and negative, maximum value for any pitch coil would be
(B=4—B-2(—Lsinnm07rcosn0) (4)

T n

and includes all possible coil pitches. If the number of teeth in
a pole pitch be #,; in addition to the average induction as in-
dicated by (4), there will also be a tooth ripple of flux, the maxi-
mum value of which will depend upon the average value of the
induction at each point. The value of m, must be a fraction
having #, as denominator and an integral numerator. The
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value of the integral numerator is therefore always mq n,. The
correct value for the max. induction will therefore be

®Bm= {ﬂz(lsinnmoﬂcosne)}(l
T n

— (= 1)mT K, cos ny 0) (6)

“ ’

where K, is the ratio of the average to the min. airgap. ‘“‘m,
must always be chosen so that m, n, is an integer.

If the length of the average effective air gap in centimeters
be d the value of B is given by

4w IN
10 2d
where [ is the maximum value of the current in the coil and N

is the number of turns. If dis given in inches we may write

47 IN
10 2d

If we integrate (B) between the limits (0 — mo m) and
(8 4+ m, m) we shall have the total flux ¢ through the coil

B = gauss

B = X 2.54 maxwells per square inch.

6+4+mo w
¢=4B7rrl E(—i—sinnmmrcosn@)dﬁ
0—mo
6+mo w
__4B7rrl (= 1)menr fz(_’ll_ sin n mg (cos n 0) K;cosn,0d0
0—mo u
4Bre [1 ‘ . ]”"’“
= — sin n mo T sin n 0
™ " 0—mo x
6+mo x
4Brl o 1 sin (n — n,) 6
- — (—-l)orK,EnGnmonw o = 1)
6—mo =
sin (n + n,0)
—_—_ 6
HRPXCE=S ©

The second expression is zero for all values of 6 which are
integral multiples of the tooth pitch angle, so long as mon is
also an integer and therefore it is zero for all mutual inductive
relations of similar coils on a symmetrical toothed core we there-
fore have:
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The induction through a coil displaced an angle 0 from the axis
of a similar coil carrying a current giving a mean induction B both
coils being wound on the same symmetrical toothed core is

__8Brl
T

z ( ;2 sin? n my T COS 7 0) @)

The second term in equation (6) also becomes zero when #,
becomes infinite independent of the value of . We may there-
fore safely make use of an imaginary uniformly distributed wind-
ing when considering self and mutual impedances. It will also
be shown later on that with certain groupings of windings the
second term may be reduced to zero for every value of 6.

If N, be the total number of complete loops in one complete

pole pitch, we may take —2]%_1— as the density of winding per unit

angle of the complete pole pitch. The mutual induction per
turn in a coil angularly displaced an angle 6 from another coil

of winding density N with an effective total air gap 2 d and

2T
with windings subtending an angle 2 m, 7 is given by
+mi x
_ 8 N1 rli ( 1 ., } ,
M, = o7 a |2 | 5z sin nmom cos n(@+0;)  d 6 henrys
—m T (8)
_ 8 lel 1 i . 0 =m = )
= o g > 5 Sntnmew [sinn (6046, ]0'=—m1 rhenr}s
16 Ny 7l 1 . )
M, = 109;7(12("3 sm2nm07rsmnmnrcosn@)henrys (9)

Next, if the loop of which M, is the mutual inductance is part of a
winding having distribution density of winding —2N72 and sub-

tending an angle 2 m, 7 its mutual inductance with the other

winding will be

M= ngglnglfz n13 sin* # mo T sin n m, T cos n
T (6 + 6Y) d 0" henry (10)
- 8N1N2?’lz _L . g .
T 2 d S i SIN'mmo W singom, W

=ma2

[sin » (0 + 01)16’ henrys
al

-—me T
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sin? # mo T sin n m; T sin

16 Ny N rl 1
My, = 10;1r22d v< nt

n Mg T COS 7 9) henrys  (11)

This is the general expression for the mutual inductance be-
tween two groups of connected coils of like form on the same
cylindrical core. It should be noted how much the harmonics
have been reduced due to grouping.

When the coils are not of like design as in the case of a rotor
and stator and the pitch of the coils is different in one from the
other, sin n my ™ will not appear twice in the equation but one
of its values must be replaced by sin # m, ™ where 2 m_ 7 is the
pitch of the new coil. Equation (11) then becomes

16 N; Ny re

M = sz g

. 1 . .
z<n4 Sinnw my ™SINN m,; T

sin #n m, T sin n Mg T COS 1 0) henrys (12)

This formula is strictly correct when m, is an integer and when
0 is an integral multiple of the tooth pitch. It is true for all
values of @ if either m, or m, or both are unity.

By considering the axes of two similar groups of coils as coin-
cident we obtain the value of A, L, which is part of the self in-
ductance of the group, thus

16 N2 r e

ALy = 10® w2 d

E< 14 sin2nm01rsin2nm17r) (13)
n

The other factor that enters into the self inductance is the slot
leakage inductance which depends upon the number of turns in a
coil, the number of coils in a group and the width and depth of
the slot and the length of the air gap. Since with the value of
A1 Ly all the field which links the secondary winding has been
included, only the portion of the slot leakage which does not link
all the turns in the opposed secondary coil should be considered.
No hard and fast rule can be made for determining this quantity
since it depends upon the shape of the slots, there should be little
trouble in making the calculation when the data is given. De-
noting this quantity by A, L, we have

L, =4A,L,+ A L, (14)
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Symmetrically Grouped Windings. The above formulae give
the mutual impedance between groups of coils, each group of
which may be unsymmetrical. Generally machines are designed
so that, although the individual groups of coils due to fractional
pitch may be unsymmetrical, the complete winding is symmetri-
cal. When two coils are together in a slot this may be done by
connecting one group of coils opposite the north pole in series
with the corresponding group opposite the south pole; that is to
say, the group displaced electrically by the angle w. If therefore
we take equation (11) and consider the mutual induction as due
to a group having axis at § = zero and another having its axis
at 8 = m with a similarly arranged group of coils having its
axis at 6, we find that (11) becomes

16 N1 Ng rl . .
M12=w2{ n4s1n2nm07r51r1nm11r
sin n my w (1 — cos n w)%cosn @ }henrys (16)
Similarly
16 Ny Ny rl 1 . .
M= —5imag— 2 { T sinnmy T sinnom,

wsinnm; wsin nm, ™ (1 — cos n )2 cos n 0 } henrys (16)

Since 1—cos n is zero for all even values of # it is evident that
(16) and (16) contain no even harmonics, moreover the above
formulae give the mutual induction between two similarly
connected groups of windings, but if (1—cos # ) is used only with
the first power these formulas give the mutual impedance be-
tween one pair of such symmetrically grouped windings and
another single group with axis inclined at an angle 6.

The value of self induction is

16 Ni2re
10072 d

1 . .
ALy = { pr sin2n mo wsin2n m, T

(1— cosn 1r)2} amn
A, L, is found in the same n.anner as before

L1 = A Ll + A, Ll (18)

It is obvious from (16) and (16) that the effect of dissymmetry
is to introduce more or less double frequency into the wave form
of generated e. m. f.
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It will be seen from an examination of (15) and (17) that, for

example, a winding of pitch 331 and subtending an angle __1r3__

when connected in a symmetrical group of two has the same field
form and characteristics as a full pitch winding of the same

number of turns subtending an angle%c

There are many symmetrical forms of winding but all will be
found to be covered by the formulas (15) and (16).

Unsymmetrical Windings. These may take many forms which
may be classified:

(1) Dissymmetry of flux form due to even harmonics.

(2) Dissymmetry in axial position of polyphase groups.

(3) Dissymmetry in windings due to incorrect grouping of
coils.

(4) Dissymmetry due to unsymmetrical magnetic character-
istics of the iron.

Of these various forms of dissymmetry the most common is a
combination of (1), (2) and (3). These forms of unsymmetrical
windings may all be calculated by the formulas (11) to (16).

It is to be noted that the mutual inductance between a sym-
metrical and an unsymmetrical winding is harmonically sym-
metrical. Hence, if the field of a machine is harmonically
symmetrical, the e. m.f. generated will be also harmonically
symmetrical whatever may be the form of the windings.

The reciprocal nature of M is fully established by its form, for
it is immaterial in obtaining (16) whether we start out with the
winding whose pitch is m, or with that whose pitch is m,, the
result will be the same. The effect of saturation will be to tend
to alter the values of the coefficients of M but the general form
will not vary appreciably. We shall now consider some standard
windings of Generators and Motors.

Three-Phase Symmetrical Full Pitch. Here mo, m; and m, are
0.5, 0.1666 and 0.1666 respectively. Using formula (16) all
the even harmonics disappear and (1 — cos n m)? isequal to 4 or
zero.

Mm-.—_%zl—%l—( 0+—cos30+ cos59
1
+2401 cos70+6561 cos 960 + .. ) (19)
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Theoretical Symmetrical Three-Phase Winding. Here m,
= 0.5,m; = ms = 0.333. Using formula (11)

_ 3 16 N1 N.rl
Mw_z——_—logﬂ'2d ( 0+ COS50
1
+2——401cos70+ 14641 cosll1 6§ + . . ) (20)

Here the third group of harmonics is entirely eliminated.

T hree-Phase Symmetrical 2m Pitch Winding. Here my, =

3
0.333, m; = my, = 0.166. Using formula (15)
- 3 16 N1 N2 fl
M 7T 1072 ( 50+ cos50

1
+ 5761 °°° 70 + 14641—

which gives the same result as (20).

cos11 0 + . . . ) (21)

FORMULAS FOR SALIENT POLE MACHINES

The formulas given in the preceding discussion are appropriate
for distributed winding and non-salient poles. Where salient
poles are used the field form due to the poles with a given wind-
ing will be arbitrary so that with the polar axis as reference we
shall have

27T N, 1,

7 2 (A, cosn ) (22)

® =
Where ® is the induction through the armature or stator. When
the poles are symmetrical 4, cos #n § might be chosen at once for
this condition and in this case we do not require coefficients of
mutual induction between pole windings, since the value of ®
is obtained by considering the mutual reaction between pole
windings to be such as will produce symmetry. We may how-
ever assume ® to be perfectly general in form in which case the
flux through a coil of pitch 2 m, 7 is

471 Nolarl A, .
- ) ,
© 04 ( - smnmo‘ircosnﬂ) (23)
We have therefore for the mutual induction between one pele
and a group of coils at an angle f and subtending an angle
2mw
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Mal =

4NaN1rl2<An

10° d e sinnmg‘lrsinnmlwcosnB) (24)

and where there is symmetry due to grouping of windings, we
have

My = sinnmymwsinnm, T

4 N, Ny rl s { Aa
10°d n?

(1 —="cos n.m)? cos n 6 } (26)

where N, is the number of turns for one pole and (25) applies to

one pair of poles and the corresponding group of coils. When there

are more than one pair of poles in series and the corresponding

groups of winding are also in series, if it is desired to consider

the mutual inductance of the complete winding, the result given

above must be multiplied by the number of pairs of poles.
If in equation (16) we take

No —1—sinnma7r=Na ]
2T n
. (26)
and — = B,
T™n
it becomes
32N;N,r!l B, . .
M, = 10°4 Z{ o sinnm, Tsinnm,m
sinnm, T (1 — cosn m)?cosn @ } 27

which is the expression corresponding to (26) starting with the
winding flux form. (26) and (27) must therefore be identical
and we have

32N1NareB o T — 4 N, N,re 4
100 d n SN My 10°d An
or
A
- A 2
®s 8sinnm, T (28)
and
27!'.[1 .
®1= ——— Z (B, sin n mo w cos n 0) (29)

104
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and is the induction wave form for a single turn of the winding.

The expression for the mutual inductance between windings

of the same core for salient poles is obtained in terms of the pole
4.

flux wave form by substituting in the formulas ——————
8sinnm, T

for nlﬂ We have therefore the following formulas for salient

poles.
General expression considering only one pole and one group of
coils.

2w N, I

= a3
Ra 04 Y (4, cosn 6) (a)
. onl sin n mo T
®, = 20 4 z <An P ——— cos n 0) (b)
4 N,N,rl A, .
M, = 10°d E( o smnmmrsmnm,'lrcosnﬁ) (c)
Mo = 2N Norl sir1nmo7rsirl e TS m
PTT100wrd ( sinnm,m TSI
sin n my T oS n 0) (d)
2
AL, = 411'1(]):7,,er 2<A" sin nm,w) (e)
2 N:irl A, sin?mmomwsin?nm,w
Sl = —Gra (n T sinam,w ) ®

General expressions considering only poles to be symmetrical.
Considered on the basis of two poles, N, being turns on one pole.

®, = ME {4, (1—cosu ) cosn 6} (a’)
104
_onl { sinpmomw } ,
®; = 30 4 z A"——_smnm, (1—cosnm)cosn @ (b”)
!
M, = AN N7l g f A sinnmomsinnm,

10°d | %

(1 — cosn m) cos n 0} (¢



712 FORTESCUE: SYMMETRICAL CO-ORDINATES  [June 28

Mo = 2N Nyrl {A,. sinnmom™ . .
12 0 7 d T Snam.w SRAmoTsinmm T
sin n mqy T cos n O}henrys (d’)
_47rN.,2rl‘{A,L . } ,
AL, = 10° 4 > - sinnm, T (1 — cosnm) (e”)
_ 2N12rlv{ A, sin2nm01rsin2nm17r} ,
ALy = 10007d “\ ' n sinmm,m &)

General expression with both polar and winding symmetry.

®, = ME{An(I——cosnw)cosne) (a’’)
10d
ol { sinwmem } ’
® = 55 > A"————sinnmxr (1~ cosnm)cosn@ )
4NaN1 rl An . . 0
M, = ——]W—“ { po sinnmywsinnm, (1 — cosnm)?
cosn@} (c")
_ 2Ny Nyrl { A, sinnmom . .
M, = Y z pr e - SIn n My T SINN M T
sinnmsm (1 — cosn m)?cosn 0} @
_ 47!'Na2?‘l An . _ 2} ’"
AL, = 10° d 2{ ~ sinnmym (1 — cosn) (e")
_2N2ril { A, sin?nmywsininm T
ML= Serg 2\ sinn m,
1 - cosn1r)2} (6348)

In using any of the formulas given above for machines having
more than two poles, it must be divided by the number of pairs
of poles and likewise the expression for M or A; L must be multi-
plied by the number of pairs of poles, which leaves the formula
for these quantities unchanged.
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Let us next consider the actual induction in the air gap with
a distributed winding operating with three-phase currents. Let
im1 be the magnetizing current of the first phase 7,2 and 7,3
those of the other phases. The induction due to one group of
coils of phase 1 is

_ 8 Niim { 1 . . }
® = 0 d z p sinnmowsinnm; w cosn 6 (30)
and if the phase displacement of 2 and 3 from 1 be ¢;; and ¢;3
8 Nyin 1 . .
®s = 10‘21rd22 { - sin n mq T sin # m,y T cos (nf — <p12)}
(31)
T R oy
®s = Toxd 2z o sin 7 mo T sin n ma 7 cos (n 0 — @3)
(32)
For symmetrically grouped coils the formulas become
_ 8 Nyim { 1 . . _
®, = 07 d z p sinnmomsinnm, T (1 — cosnm)
cos n 0 } (33)
_ 8 Niime [ 1 . . _
®y = 07 4 El " sinn o ™ sinn me (1 — cos n m) cos m
0-d0) @
8 N3 im 1 . .
@3=ﬁ 2{7 Slﬂnﬂ‘lo'frslﬂnm:{ﬂ'(l—COST’l'ﬂ')COS"’l
(0 — ¢13) } (36)

For a symmetrical three-phase motor with full pitch coils
= 0.5, m; = mg = myz, = 0.166 (33), (39) and (356) become
of the four

&1_8N11‘m1 {COSO

0 g cos30+ cos50+ cos70

9

2 1
_.8—1c0590+ 005110+i—6§ cosl30+} (36)
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which is the field due to one group of coils alone. The wave is
flattened by the third group of harmonics but all the other
harmonics are peaking values. There is therefore a decided
gain in such a wave form of flux since it permits of high funda-
mental flux density.

The maximum value of flux is approximately

Bma:c = (0.823 . —%Tgaus (37)

where d is given in centimeters.

1.67 Nyin

Baaz = T d

maxwells per square inch,

with d given in inches.

For the total winding the resultant induction will be the sum
of By, Bs, and B. If we take the symmetrical winding with
angles between planes of symmetry

2T 4T
P12 = —5— and ¢;3 = —5 - we have
einb e-—jnB
cosn 0 = 3 + 3
Jjno —jné
cos 1 G—H)-a ¢ + ot (38)
3 2

47 . el _,eint

cosn(@——?’)—a 5 +a 5

If we multiply these three quantities successively by Ini,
@1, alni and add, we have

c—jnﬂ

2

- ejno )
1ml { 5 (] +a"(’1'*~’) +a(u+l)) ( +

X (1 + a+? 4 g=-) ) } (39)

and giving n successive odd values from 1 up, we find for (39)
the following values
3

1 (89) becomes 3 Iy e—i0

n= 3 ¢ “ 0

I

n
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- 3 :
n= 5 ¢ “ = Iy €958
n= 7 “ if e—778
2
n= 7 “ 0
3 .
n =11 ¢ « 2 F. eille
2 2 n
—ji==snZf e
2nm V5 ’
n=n ¢ “ 2 I sin? e

We may therefore express ® by
® = real part of

16 N, I, s 1
10w d n?

sinnmomsinnm,w(1— cosn m)

- —-—sn n 6
]\/_ 1 3
2"-7‘

X sin?

(40)

It will be obvious that if we proceed around the cylinder in the
negative direction of rotation at an angular speed w and I,
is equal to I, e, for n = 1 the value of B; will remain
constant and real, hence B; must be a constant field rotating at
angular velocity w in the negative direction. The value of B may
be expressed in harmonic form, but in this form it does not illus-
trate the rotating field theory so aptly. The harmonic form is
given below and is simpler in appearance than (40).

® = sinnmomwsinnm; w(l — cosnm)

16 Ny imi o (1
0rd (nz

sin?

T cos n 0) (41)

For a symmetrical three-phase motor with full pitch coil
(mo = 0.5 m; = 0.166) ® becomes

(Bmlleimlv{cogo_l, Cog50+'—'COS70

107rd ~

1
+—1—2—i-005110+169cosl30+ .. } (42)
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This gives for the maximum induction approximately

_ 1075 X 12 Nytmy  _ 129 Nyin
®Brmaz = 107 d = d gauss (43)
where d is measured in centimeters.
®Brmoz = 3.28 Xﬂ_ Zl ml maxwell per square inch (44)

where d is measured in inches and N is the total number of
turns per pair of poles.



