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XXI.  A Freehand Graphic way of determining Stream 
Lines and Equipotentlals. /~y L. F. RICH~.RDSOS *. 

[Plate XH.] 

SCHEME OF PAPER. 

I. On the need for new methods. 
II. The first idea of freehand solution and confirmation of its 

accuracy. 
III. The conditions which the solution of ~72V=0 must satisfy in 

order that it may be determinable by a single graph. 
(a) When the guiding lines are normal to a family of surfaces. 

Possible types--test cases. 
(5) Thin shells. 
(e) Screw symmetry--example. 

IV. Points and lines of equilibrium. 
V. Equations other than Laplace's--varlable conductivity. 

~I. Boundary conditions. - 
u Miscellaneous notes on draughtsmanship. 

u Estimation of errors. 

I. The Need for _/Ve~ Methods. 

T H E  Laplacian differential equation 

bW b W .  bW 
= o 

has received an extraordinary amount of atfention during the 
last century owing to the great number of physical quantities, 
the space distribution of which can be determined from its 
integrals. The analytical integrals hitherto obtained by such 
means as Fourier series, Bessel functions, spherical and other 
harmonics make it possible to determine the distribution when 
the boundary conditions bear relation to certain simple types 
of surface, such as parallelipipeds, cylinders, spheres, ellipsoids, 
anchor rings, &c. 

Now for physical research this is well enough. I t  is 
usually possible to arrange the instruments so that the parts 
involved-are of these simple forms. The wires may be wound 
in circular rings of small cross-section, as in Helmholtz's 
galvanometer. The pieces of substance for the measurement 
of specific properties may be shaped into square bars, as in 
Forbes's experiments on the flow of heat. Or, as in Kelvin's 

Communicated by the Physical Society ; read November 8, 1907. 
Phil. Mag. S. 6. Vol. 15. No. 86. Feb. 1908. S 
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238 Mr. L. F. Richardson on a Freehand Graphic way 

attracted disk electrometer, parallel plates may be made 
practically infinite by his device of the guard-ring. 

But for the purposes of the engineer this is of very limited 
applibation. If  he is to handle partial differential equations 
freely, they must be applicable to bodies of most various shapes, 
such, for example, as the toothed core-plates of dynamos, the 
water surrounding ship shells and screw propellers, the space 
between turbine blades, and a host of other forms, too irregular 
to be readily described. 

Further than this, the method of solution must be easier 
to become skilled in than are the usual methods with harmonic 
functions. Few have time to spend in learning their 
mysteries. And the results must be easy to verify--much 
easier than is the case with a complicated piece of algebra. 
Moreover, the .time required to arrive at the desired result 
by analytical methods cannot be foreseen with any certainty. 
I t  may come out in a morning, it may be unfinished at the 
end of a month. It  is no wonder that the practical engineer 
is shy of anything so risky. 

Harmonic functions have, however, one very strong point 
in comparison to the methods put forward in this paper, and 
that is their accuracy. Once we have determined V as an 
infinite series of harmonic functions, it is usually not much 
more labour to obtain an accuracy of 1 in a million than of 
1 in ten. 

Now it is true that in the determination of absolute electric 
standards measurements arc made to 1 in 100,000 or to an 
even greater refinement. But for most chemical and physical 
work 1 in 1000 is more like the limit attained. And in any 
new branch of research, two, five, or even ten per cent. are 
very welcome. The root of the matter is that the greatest 
stimulus of scientific discovery are its practical applications. 
And here, in the design of machinery for example, cost rules 
everything, and this can seldom be foreseen as near as 
1 per cent. 

To sum up. The existing methods of solving Laplace's 
equation are susceptible of great accuracy, but they are slow 
and uncertain in time and, most serious of all, they can only 
be applied ~ very special boundary conditions. There is 
obviously a d.mand for a method of solving that group of 
partial differential equat ions--of  which we may regard 
Laplaee's as the simplest type--which shall, if necessary, 
sacrifice accuracy above I per cent., to rapidity, freedom 
from the danger of large blunders, and applicability to more 
various forms of boundary surface. 
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of determining Stream Lines and EqUilaotentials. 239 

II. The First Idea of Freehand Solution. 

The real simplicity of the space distributions of electric 
and magnetic phenomena,--so much disguised in the algebraic 
integrals of the differential equations, but rescued from con- 
fusion and clearly set forth by the vector analysts, I-leaviside, 
Walker and others,--leads one to hope for equally simple 
methods of calculating their numerical values with re~erence 
to any boundary whatever. 

The beautiful figures of stream and equipotential surfaces 
published by Maxwell, Lamb and others as the result of 
harmonic analysis, and by Hele Shaw as the result of experi- 
ment, suggest that by imitating their characteristic properties 
freehand we may, in some small part, attain the result 
desired. 

Maxwell in w 92 of his 'Elementary Treatise on Elec- 
tricity and Magnetism' speaks of tentative methods of 
altering known solutions of the Laplacian equation by drawing 
diagrams on paper and selecting the least improbable. The 
object of the present thesis is to point out that this method 
can do far more than merely alter known results, and that it 
may be so far from tentative as to yield an accuracy of 
one per cent of the range. 

This method of treating potentials, although still far from 
combining all desirable qualities, and suit~ring from the 
restriction to certain types of symmetry, yet from its great 
freedom within those types may, it is hoped, supply to a 
certain extent the demand we have indicated. 

On turning to Maxwetl's figures and picking out those in 
which V is independent of z so that we have 

5W 5W 5~ ~ + ~  =0, 

it will be seen that while the curves are of the most various 
shapes yet the chequerwork of all the diagrams possesses 
these two properties in common :--(1) the corners are 
orthogonal, (2) when the chequers are small enough the 
ratio of their length to breadth is the same in all parts of 
the field. 

The proof of this follows most conveniently from the con- 
sideratiou of the motion of a liquid when the lines of flow 
lie in parallel planes and the motion is the same at all points 
of any nermal to these planes. Draw three adjacent stream 
lines defining two adjacent tubes of flow. 

8 2  
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240 Mr. L. F.  Richardson on a Freehand Graphic way  

Take two points A and B on the mid line of one tube, and 
from A and B draw normals to the direction of flow cutting 
the mid line of the other tube in D and C respectively. 

Fig. l. 

Halfway between AD and BC draw a line PQS normal to 
the direction of flow so that PQ is the width of one tube and 
QS of the other. Now if the fluid is incompressible and we 
have drawn the tubes so that the flow in each is the same~ 
then the respective velocities are to one another inversely as 

k k 
PQ and QS. Let the velocities be ~ q  and Q-S" Next let 

us take the line integral of the velocity round the small 
rectangle ABCD. The sides AD and CB are normal to the 
flow and so contribute nothing. The sides AB and CD 
contribute ( ~176 k D C •  AB_~_ 

AB• =k VQ �9 

AB 
Now t)~ is the ratio of the length along the flow to the 

breadth across the flow of the small chequer which has A, Q, 
B, P, at the mid points of its four sides. It will be convenient 
to have a special name for this quantity, and I propose to 
call it the "chequer rat io" with the understanding that 
length along the flow is always in the numerator, and that 
the chequer is so small that its s~ze no longer causes an 
appreciable deviation from the accuracy obtained by using 
infinitesimals. Then we have : - -  

Ditterence between successive 
Line integral of the velocity around ABCD=k• ~ chequer ratios in a directior~ 

/ perpendicularly across flow. 
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oj determining Stream Line8 and Equipotentials. 241 

Now the curl of the vector velocity is defined as the line 
integral round a small circuit divided by the area of that 
circuit--that is in this case by the area ABCD which will in 
the limit be equal to the mean of tho areas of the two 
adjacent chequers. So that we have : -  

difference of successive chequer ratios in a direction 
perpendicular to velocity 

curl of the velocity =k mean chequer area 

If  the velocity has no curl the chequer ratio must not vary 
along any line normal to the flow. I t  may vary from one 
normal to another, but if  on the other hand we prefer to make 
it constant all over the field, then at any point the distance 
between successive normals will be inversely as the flow, so 
that these normals will be contours drawn at equal intervals 
of a velocity potential. 

To return : since the fluid is incompressible the condition 
for the existence of a stream function is satisfied, and since 
the stream-lines are drawn so that the flow between each 
successive pair is the same, it follows that these stream-lines 
are the contours drawn at equal intervals of a stream 
function ~ .  Now it is proved in works on Hydrodynamics 

that ~ + ~ is equal to the curl of the vector velocity. 

Therefore : -  
difference of successive chequer ratios in a direction 

~2qF . ~2~ k perpendicular to the contours of 
~,v~ -1- ~ = mean chequer area 

And since ~ may be any one-valued function of position on 
the plane, it is seen that all hydrokinetical considerations have 
been eliminated from the above equation, which is purely a 
proposition in differential geometry. The only implication 
being that contours are drawn at equal intervals of @ what- 
ever be its physical meaning. 

To draw chequers freehand so as to satisfy a difference 
relation of this sort between the chequer ratios is likely to be 
toilsome, and we will here consider only the case when 
V~@ = 0. 

Supposing then that a chequerwork has been obtained in 
which the chequer ratio is everywhere the same and in 
which the given boundary conditions are satisfied, then by the 

~ V  . ~ V  
uniqueness of the solution of 3 ~  § ~ - =  v this chequer- 

work gives us what we want. 
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242 Mr. L. F. Richardson on a _Freehand Graphic way 

It remains to be shown what accuracy may be expected 
from the freehand method. This is oE course largely a 
personal matter. I exhibit my own handiwork. Others will 
doubtless obtain greater precision. Throughout this paper [ 
have chosen test cases in which the analytical verification 
should not be too difficult. Hence the diagrams look rather 
stiff and formal and do not in any way do iustice to the 
~veedom of this graphic method. 

Fig. 2. 

/ 
/ 

_Example of  t)te solution of  ~2V ~ V  ,~ . ,  ~-~ +~---- -v . - -z~long one 

air of opposite edges of a square V - 1 ,  along the other pair 
---0. Find V at all points inside. By symmetry V wiil be 

equal to ~ along the diagonals. And again by symmetry, 
the lines joining mid-points of opposite sides will be normal 
to the contours of V. So that it is only necessary to find V 
in half one-quarter of the square. Further, by symmetry, at a 
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of determining Stream Lines and _Equlpotentlals. 243 

corner of the square the contours drawn at equal intervals of 
V must make equal angles with one another. One starts 
then by ruling out an accurate square, putting in the 
diagonals, joining the mid-points of its sides and setting off 
the equal angles with a proCTactor. I t  is convenient to 
divide the range of V into ten equal parts. Having thus 
prepared the paper, lines were sketched and amended until 
further improvement became very slow. The pencil-lines 
were then firmly fixed in ink. Coordinate lines were drawn 
in and the values of V at six points were read from the 
diagram and are given in parenthesis in the accompanying 
table. The whole work from the beginning of the drawing 
took two or three hours. 

1"0 

1.0 

"5 

.5 

"5 

('307) 

-300 

"5 

(-47) 
-5 

"466 

('40) ('365) 

�9 396 "364 

('23) ('20) 

�9 223 "202 

0 0 0 

Not until this had been done did I look up the correct 
values which had been computed from the analytical solution 

4 1 , ~ l  1 mII V-- ~ ~ ( - - )  ~ sech -~-eos rex. cosh mz. 
m odd  

These are given in the table beside the numbers read from 
the graph. From these we find the errors +'007, +'007, 
--'002, +'004, +'001, +'004. Treating these as all of the 
same sign, their mean is "0042. 

The error of a graph may well be compared with the total 
ran_~e of V within which the determination was made 
free~aand. In this case the range was 0"5 so that the mean 
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244: Mr. L. F. Richardson on a .Freehand Graphic way 

error was 0"84: per cent. of the range, a degree of accuracy 
which would be sufficient for many purposes. 

ttaving shown that the freehand method is a practical one 
in a plane, it will be well next to enquire to what types of 
symmetry it may be extended. 

I I I .  Possible Types of Symmetry. 

Inasmuch as a single chequerwork is to determine the dis- 
tribution in the whole of the space considered, we are confined 
to two coordinates. The freehand method at present offers 
nothing to compete with the analytic forms in which three 
coordinates appear, such as : 

V = ~ ( A  sin mx+ B~ cos rex) (C, sin ny + D cos ny) (Fe- ~ / ~ .  ~ + Ge + 4 ~ . , ) ,  
f n ~  

V =  ~ e~(A~ cos me + B~ sin mr 
r~,, k 

(Whittaker, 'Modern Analysis,' p. 318) 

V = ~ C,,r~(A~ cos ~0 + B~ sin nO) (sin 0) ~ ~ ' . e ~  
�9 d ~ n  ' 

~" ~ (Byerly, ' Fourier's Series,' p. 196) 
or others like them�9 

The expressibility of V in terms of two coordinates implies 
that V is constant along a certain family of lines in space, 
namely, the intersections of the surfaces over which the said 
two coordinates are respectively constant. Any particular 
type of symmetry is most conveniently distinguished by 
specifying the family of lines along each of which V must be 
constant. 

As it will frequently be necessary to refer to these lines 
and to distinguish them from the normals to the surfaces 
V =constant, I propose to call them the " guiding lines." 

I t  is indeed conceivable that by adding together several 
space distributions in each of which V is constant along a 
different family of lines, we might attempt the solution of 
problems which it may be impossible to treat by two co- 
ordinates directly, such for example asLthe motion of a perfect 
fluid past a three-bladed screw-propeller, or the electrostatic 
field due to a ring of electrons. I t  may even be possible to 
treat the most general distributions by means of sections of 
the potential surfaces drawn on the leaves of a book of tracing- 
paper. But these extensions must be left to those who desire 
the results. This paper deals only with two coordinates. 
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of determining Stream Lines and Equlpotentlals. 245 

Case (a). The guiding lines are everywhere orthogonal to a 
family of surfaces.--Let these be the surfaces over each of 
which 5' ---- Fa(x, y, z) is constant. 

Then choosing a particular surface, say 5'----5"0, we wish to 
draw thereon a cheqnerwork of orthogonal lines, and we wish 
this chequerwork, by the motion of each point of it along the 
guiding line at that point, to sweep out two families of surfaces 
in space, in such a way that one family may be equipotentials 
and the other stream-surfaces. This requires that these two 
families, which we may denote by 

~t=Fl(x, y, z) =const., fl-=-F~(x, y, z)=const.,  

should be everywhere orthogonal. Therefore the surfaces 
a, fl, 5' are mutual orthogonal, and consequently the surfaces 5" 
must satisfy the condition necessary in any member of a triply 
orthogonal system (Sahnon, ' Geometry of Three Dimensions,' 
4th ed. w167 476 to 486). 

But more than this. For we wish to be unrestricted as to 
the direction of the orthogonal traces of a and fl drawn upon 
the surfaces 5'. Therefore, since three mutually orthogonal 
surfaces necessarily intersect in their lines of curvature 
(lee. cir. w 304), it follows that at every point of the surfaces 7 
there are lines of curvature in every direction. The only 
form which possesses this proper6y is the sphere or its limit 
the plane. Therefore the surfaces 5' are either spheres or 
planes. This is necessary. We have not proved that it is 
sufficient. As frequent reference will be made to the theorems 
proved in Lamd's Lemons sur les coordonndes curvilignes, it will 
be convenient to employ expressions such as (Lam6, w xi. 15) 
to indicate equation 15 of w xi. of this treatise. The relation 
of our notation to Lamd's is that his p p~ P2 are replaced by 
a fl 5" and that a fl 5" are used as subscripts respectively 
instead of absence of subscript, 1 and 2. Otherwise the 
notations are the same. 

In particular, if F is any function of position, we will 
denote by HF the quantity 

which is the reciprocal of the space-rate of F along the normal 
to the surface F =-constant. 

Consider the lamina bounded by the two spheres 5" and 
5'+~5". The thickness of the lamina is H~87. If  a=V----the 
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246 Mr. L. F. Richardson on a .Freehand Graphic way 

potential, then the surfaces/3= constant are surfaces of flow�9 
Denoting in like manner the distances between two adjacent 
surfaces of these families by H~a ,  tt~6B, we see that H~6a 
and HaSB are the length and breadth of a chequer traced on 
the surface ~'. 

A tube of flow is bounded by the four surfaces B, ~+$/~, 
7, 7 + ~/. And its cross section is therefore H~. Hy. SB. 67. 

Now if the flux has no divergence, then along a tube of 
flow magnitude of flux multiplied by cross-section =constant. 
But the magnitude of flux is equal to the negative space-rate 

1 
of the potential a along the line of flow, and this is - - ~ "  

H~. H~ 
Therefore along a line of flow ~ .  6~.6 7 must he con- 

stant in order that the vector space-rate of the scalar a ~ t h e  
Hamiltonian Va--shall have no divergence. Or equivalently 
the condition that 

In. .  V o, = o  is 

Now we may by freehand trial and amendment so arrange 
the orthogonal lines on the surface 7o that the above relation 
shall hold true on the surface 7o; but we must further 
enquire what conditions the spheres 7 must satisfy in order 

that ~ _ ~ ( i t ~ ? , ) _ _ 0  shal 1 - _  TT-- be true for all values of 7 when 

it is true for one 70; and this moreover when a and • are 
otherwise undetermined. 

At this stage the fact that the surfaces ~ are spheres makes 
a remarkable simplification. For supposing for a moment 
that they did not possess this property and that r~ and ~ were 

�9 �9 �9 . .  ' ~ r  

their principal radn of curvature at any point, then by 
(Lamd, w xxx. 24) 

1 _ h r ~h~  1 _ h~ 

where h~,= 1 and similarly for/~ and 7. H--: 
Equating the two curvatures, 
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+ 

H~ and therefore vanishes; so that the chequer ratio ~ is a 
function of a and/3 only. 

As has already been stated, to make •2a=0 on the surface 
7o we must have 

B {H~ H~o~ 0, 

which may conveniently be arranged by making 

I-i-= 
H~ -- k0 H~,0 

where k0 is a constant, so that the chequer ratio is given as a 
function of position on ~/o. This is more than sufficient in 
that it makes 

vanish as well, but the loss of generality involved is found 
not to matter, while the simplicity gained is a great con- 

H~ 
venience. Next, because ~ -  is independent of 7 it follows 

that on any other surface 71 we still have 

H~ 
H~ = koH~o. 

Bat if ~sa=O is to be satisfied on this second surface we 
must there have 

H.  
H--~ = kl H~, 

where ks is a second constant. Therefore regarding ~/0 as 
fixed and ~/1 =~/as movable we have H~ = H~o x a function of 
7 only. 

But HVo is a function of a and B only. 
This relation is equivalently expressed by the two equations 

3~ (log H~) = 0, ~-~/3 (log H~) = 0, 
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248 Mr. L. F. Richardson on a Freehand Graphic way 

whence by (Lam6, w xxx. 24) 

But if the surfaces ~/ are planes, then by the equations 
(Lain6, w xxx. 24) already quoted 

and consequently 1 and 1 - -  - -  are independent of 7. But it 
lea / Z'r V 

is shown by Lam~ (w xxxviii.) that the curvature of the arc 
of intersection of the surfaces a and/3 is equal to 

So that if the radius of curwt~ure of this arc be p then p is 
independent of "//. But p is equal to the length of the normal 
from the point considered onto the line of ultimate inter- 
section of two consecutive planes of the family ~/which pass 
one on either side of the point considered. As the plane 
moves this length must remain constant. And as this is to be 
true for every point in space, it is easy to see that if the 
surfaces 7 are planes they must intersect in a common axis. 
We have in this case symmetry about an axis. Or if the 
axis be at an infinite distance, the planes are parallel, and we 
have V independent of one of the Cartesian coordinates 
x, S, z. But if, quite generally, the surfaces ~1 are spheres 

ha r~ 
we have only ~ independent of 7 and therefore r-~ inde- 

pendent of % I f  the centres of the spheres 7 lie in a straigh t 
line, then since the orthogonal traces of the surfaces a and fl 
on a sphere qt may turn round anyhow, we may choose for B 
the t)lanes intersecting in the line of the centres of the 
spheres % Then r~----0, and consequently r~ is independent 
of ~/ so that the traces of a----const, on the planes /9 are 
circles. This is the system of toroidal coordinates which has 
been treated by Professor Hicks in Phil. Trans. 18817 
Part II.  Now the above reasoning would lead us to expect 
in these a type of symmetry which can be dealt with by two 
coordinates--other than symmetry about an axis. But on 
referring to Hicks's formulae it is easy to show that this is not 
possible for if V be made independent of either of those two 
of his coordinates which determine position in a plane passing 
through the axis, then the other of these two will not divide 
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of determining Stream Lines and Equlpotentials. 249 

out of the equation ~ V - - - 0 ,  so that all three coordinates 
must still be present in the integrals. Clearly then, our 
deductions, though necessary, are not sufficient. I have little 
doubt that the omission lies in this : that to leave us unre- 
stricted as to the direction of the orthogonal traces of a and 
/9 upon the surfaces 7, it is not sufficient that the surfaces ~/ 
should be spheres. For the curves normal to ~/ which we 
have called the "guiding lines" must be such that they form 
one set of lines of curvature of any surface whatever passing 
through them. To satisfy this condition it seems likely that 
except when the radius of the spheres 7 is infinite, the 
guiding lines will have to be straight and the spheres con- 
centric. This is the symmetry when V is independent of the 
radius in spherical coordinates, but may vary anyhow with the 
latitude and longitude. 

The only case remaining uninvestigated is that in which 
the surfaces 7 are spheres with centres which do not lie on a 
straight line. 

By this application of Lam~'s formulve, aided by those due 
to Hicks, we have discovered no new type of symmetry 
which allows two coordinates to be used instead of three. 
We have proved that within the stated limits the well- 
known types are the only possible ones. A summary of 
these may be useful. 

Summary of Types of Symmetry/whel~ the guiding lines are 
o~*thogonal to a family~ of surfaces. 

I f  V2V is made equal 
te l(V,  a, j3) over one Analytical 

Guiding lines. Chequer ratio, surface ~0 its value methods. 
on the others will be 

Conjugate 
Parallel straights. Constant. v2V~.f(V, a, ~). functions. 

Circles with their 
centres on a com- 
mon axis and 
their planes nor- 
real thereto. 

Radii from a com- 
mon point. 

Proportional to 
distance 

fr axis. 
v2V_f(V, a, ~). 

Constant.  
VW= .f(V, a, ~) 

r2 
where r is the distance 
from the radiant point. 

Zonal harmomcs  
of the 

cylindrical, 
spherical, 
spheroidal, 

and toroldal 
systems. 
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250 Mr. L. F. Richardson on a Freehand Graphic way 

Example of Sgmmetry about an Axis.--Byerly in his 
' Fourier's Series and Spherical Harmonics,' p. 230, sets 
the following problem : - -"  A cylinder oE radius one metre 
and altitude one me~re has its upper surface kept at tem- 
perature 100 ~ , and its base and convex surface at the 
temperature 15 ~ until the stationary temperature is set up. 
Find the temperature at points on the axis 25 cm., 50 era., 
and 75 era. from the base. and also at a point 25 cm. from 
the base and 50 era. from the axis." To solve this the first 
thing necessary is to prepare a chart bearing chequers of the 
appropriate shape for each distance from the axis. The 
graph of any solution of X72V=0 symmetrical about an axis 
would serve this purpose. For example several of the figures 
out of Maxwell's ' Electricity and Magnetism' would do. But 
I preferred to prepare a standard chart by ruling equidistant 
parallel equipotentials normal to the axis of revolution, and 
then stream-lines parallel to the axis at distances fi'om it 
proportional to the square roots of the natural numbers 
O, 1, 2, 3, 4, 5, &c. The cross section of the cylindrical 
shell enclosed between successive stream-lines is then the 
same for every pair, and the chequer ratio proportional to 
the distance from the axis. This having been done in red 
ink, a sheet of tracing-paper was pinned over it, the section 
of our given cylinder was drawn in black and equipotentials 
and lines of flow were drawn in pencil. These were then 
rubbed out and amended with the aim of making the pencil 
chequers everywhere very similar to the red rectangles 
underneath. When improvement became slow, the blurredlines 
were made firm and definite with ink and the chequers con- 
sidered individually and marked as to whether they were too 
square or too thin. The lines were then drawn on a clean sheet 
of tracing-paper, the chequers again examined individually, 
and finally the lines fixed in ink (see fig. 3). Coordinate lines 
were then ruled tmd the values of V at their intersections were 
read from the graph. This process, from the ruling in of 
the given contour to the determination of V in numbers, 
took me four hours. The analytical method would perhaps 
have been more rapid in this case; but for an irregular 
shaped contour with an irregular boundary distribution 
the freehand solution would still take about the same 
time, while analytical methods may be ahnost indefinitely 
tedious. 
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o/deter~nlnlng Stream Lines and Equipote~tials. 251 

Fig. 3. 

1 
The results are tabula teJ  below : -  

Distance from base of cylinder . . . .  25 50 75 25 cms. 
, axis , . . . .  0 0 0 50 , 

Potential read from the graph as 
decimal of unit range. ( "175 "38 "64 "14 

Last multiplied by the actual range ( 
(100o_15o) ~ 14 -9  32"3  54"4 11"9 

Last +15 ~ temperature .. 29"9 47'3 69"4 9,6"9 

Not  un t i l  these numbers  had been wri t ten  down did I look 
at  the correct values found by  Byer ly  from the Bessel funct ion 
series, namely  : - -  

29'6 47'6 71"2 25.8 
Errors of freehand determination.. + '3  - "3 - '8 +1'1 

Dis rega rd ing  signs the mean  of these errors is "63 
which is equal to 0"74 per cent .  of the range  of 85 ~ . 
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252 Mr. L. F.  Richardson on a Freehand G~aph~c way 

.Example of tire type of symmetry when V is independent of 
the radius in spherical coordinates.--" On a uniform spherical 
shell there are equal sources at the north and south poles 
and equal sinks at the extremities of a diameter lying in the 
equatorial plane. The sources and sinks send out and receive 
uniformly in all directions. The flux has no divergence except 
at the sources and sinks and no curl anywhere. Find the dis- 

f e ' J  tribution of potential on the sur ac . Todo this we might draw 
orthogonal lines on the surface of a globe so as to make the 
chequers ratio constant. Or because, in Mercator's projection, 
any small part on the globe transforms into a small part of 
the same shape on the map, we may transform the boundary 
conditions and obtain the required solution by drawing 
chequers of constant chequer ratio on the map. Blank 
Mercator projections suitable for this work may be obtained 
from George Philip & Son, Fleet Street. In the present 
example the lines of flow radiating from the pole become lines 
straight, parallel and equidistant at infinity. And as the 
graph progressed it was found that by their symmetry 
with the sinks on the equator, the foregoing condition must 
he very nearly satisfied at 10 ~ from the poles, a region which 
is within the confines of the map. Again, in this case it is 
only necessary to determine V in one octant of the sphere, 
and symmetry helps us in other ways. The accompanying 
graph (fig. 4) is the best of four or five separate attempts. 
The time taken to make these was collectively four hours. 
Special attention was given to the equipotential curve which 
passes mid-way between the t~o equatorial sinks, and as the 
result of the aforesaid trials it was found to pass through a 
point 44 ~ due north os the sink on the equator. This suggested 
that the true value should be 45 ), and on looking at a sphere 
this is seen to follow from symmetry although it was not 
obvious on the map. Thus again we have a confirmation of 
the passable accuracy of the graphic method--the error hero 
is 1 degree in 90 or 1"1 per cent. of the range. 

So far we have only treated the problem as relating to a 
spherical shell. But we may next suppose the sphere solid 
and V to be independent of the radius. We will then have 
a solution of Laplace's equation in space. Since the chequer 
ratio is constant, the magnitude of the flux is inversely pro- 
portional to the linear dimensions of the chequer (on the 
sphere not on the map) and is consequently proportional to 

1 along any guiding line, r being the radius. But if we draw 
r 
any small cone enclosing the polar axis--which is now a line 
source--we see that the outflow between two spheres r and 
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oJ determining Stream Lines and Equipotentlals. 253 

r + $ r  is proportional to Sr • (magnitude of flux) • (peri- 
meter of the trace of the cone), and by the above this is pro- 
portional simply to Sr. Therefore the polar axis must be a 

Fig. 4. 

/ 0 0  r  / r  / 5 o  / 3 o  

line source of uniform strength and similarly for any other 
source or sink when the guiding lines are straights passing 
through a common poinf~----the strength must be independent 
of the radius. 

Case (b).--General method for conduction in a t/tin shell 
o/any shape, the thickness and conductivity being any given 

Phil. Mag. S. 6. Vol. 15. No. 86. Feb. 1908. T 
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25~ Mr. L. F.  Richardson on a Freehand Graphic way 

functions of position on its surface~ and all conditions being 
constant throughout the thickness of the shell at any point of 
its surface. Take a solid bounded by a surface of the shape 
of the shell and draw small rectangles at numerous points of 

length along flow 
the surface, so that their chequer ratio---- breadth across flow 

is directly proportional to the product of the thickness and 
conductivity at each point of the shell. For then the flow 
through each chequer will be the same. Suppose that these 
standard chequers are in some distinctive colour, say red. 
Now lay off in black the boundary conditions of the special 
problem and draw a black chequerwork to have the same 
chequer ratio as the red at each point, much as was done for 
symmetry about an axis. The standard red chequers need 
not be connected so as to form two systems of orthogonal 
lines but may be scattered anyhow over the surface, all that 
is necessary is that they should be sufficiently small and 
numerous. 

Or it may be convenient to use a projection of the surface 
as was done in the case of the spherical shell above. 

Case (c) . - -When there exists no family of surfaces normal 
to the guiding lines. Without pausing for generalities we 
will proceed at once to : -  

Screw symmet ry  about an a x l s . - - L e t  us discuss this with 
the aid of cylindrical coordinates r, ~ ,  z. At a point P on 
the axis OZ let a perpendicular be drawn extending to 
infinity. This perpendicular, which is to project only on one 
side of the axis, is imagined to revolve round the axis and 
slide along the same with proportional velocities. In one 
rotation round the axis let it move l along the axis. Then 
the line sweeps out a surface, at all points of which the 

1 l 
expression z -- ~ b  is constant. Let  us put z -- 2-~r 

Then as to varies we pass from one of these screw surfaces 
to another formed by shifting the first parallel to z. The 
range of the coordinate r is from 0 to I. The intersections 
of w=const ,  with ~he cylinders r=cons t ,  are a family of 
screw-threads. 

Let d~/ be an element of distance measured along any 
screw guiding lin% so that d2 ---- length of turn of screw 

dz l = 
a function of r only. And let us make V a linear function of 

~v 
distance along each screw-thread so that ~ - -  a function 
of r only. 
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of determining Stream Lines and Equlpotentlals. 255 

Then as d~?, d~, and dr are in perpendicular directions 
they are independent and 

5V BV Be, ~BV B~ BV B~" 

5V 5 v  which reduces to ~--~ ---- ~-~ + a function of ~ only. 

Therefore 
B/Bv  B 

B2V Bn B BV B2V 
=~-~ + 5 ~ ' ~  (B~-) = 'i~oo--~ �9 

Again, 
BV BV Ba) . BV By 1 BV 
B~ - B~o " ~  ~- 5-~ "~r - 2,r'Bo, +a  function of 

r only. 
Since 

d~/ length of turn of screw = = a function of r only. 
&b 2~" 

And so 
B~v z BtBv~ z{Bo, B +B~ B~BV 
B4, -  k Bo, 

l ~ B~V = + 

B2V and ~ r  in the ex- Now substitute these values of -B~-Z 

pression for V~V in cylindrical coordinates, and we have 

5 ~ V + ~ V  /_ I ~ ~5~V 

which contains only two coordinates r and ~. So that if we 
make v ~ V = f ( V ,  r, co) over any surface the same will be 
true throughout the whole region filled by the screw-threads 

BY 
passing through the surface, provided that ~ is such as to 

B~V 1 BV 
make ~ - "  -I- r ~ -  constant along every guiding screw. 

One way of satisfying this is to make V increase by the same 
amount per turn of the screw, along every screw-thread and 

B~V and BV so that ~ -  ~ -  arc both constant along every guiding 

screw. 
T2 
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256 Mr. L. F. Richardson on a .Freehand Graphic wa~/ 

In the following pages, except where specially indicated, 
5V 

we will consider only the case ~ -  ----0. 

As this result does not appear to be given in the text- 
hooks, it may be well to confirm it by a slightly different line 
of reasoning, as follows. The tangent of the angle between 
the tangent to any screw-threads and a plane normal to the 

/ 
axis of symmetry is 27r--~'" 

Therefore the first space rate of any function of position 
V along the tangent to a screw-thread is 

1 

If  ~V ~-~ ----a function of ~" only, along every sccew-threacl 

then we have a function of q" only +2~r oV 1 oV 

throughout the whole region. Therefore this last equation 
will still remain true alter differentiation by ~ or by z, thus 

2~r 5~V ~ V  
t 34,  - 5 r  

5~V l 3~V - - _ _ ~ .  
]5r  2~r3z ~ 

5 W  Equating the two values of 5 ~ z  thus obtained we have 

3:V 1 ~ 0:V 

which on substitution in the expression for ~7iV gives 

5~v 1 3 v  [ 1 ~ ) 3 ~ v  Xy~V---~-j + -  + \ 1 +  

But i~ is now to be observed tha~ i~ the distribution of V 
on any plane passing through the axis of symmetry is known, 
then V is determined everywhere. Ancl on such a fixed 
plane the contours of z are identical with those of co. So 
that we may replace z by co in the last equation, and the 
previous result is confirmed. 

We have shown that if we make ~7~V--f(V, r, co) over 
any surface intersecting all the screw-threads, the same will 
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q]- determining Stream Li~es and Equipotentiats. 257 

be true throughout the whole region, with the stated pro- 
~v visions as to the value of b~-. The geometrical meaning of 

this result is that if " nole we draw any infinitesnnal recta g 
normal to one of the screw-threads and draw screw-threads 
through each of its four corners, then the infinitesimal tube 
thus formed will be everywhere rectangular in normal cross 
section, and more than this, the rectangle will have the same 
ratio of length to breadth and will be of the same size at all 
points along the tube. For if we consider one pair ot~ opposite 
faces of the tube as equipotentials and the other pair as 
lines of flow, then these properties are seen to follow 
from the fact that V2V is constant along a screw-thread 
when V is constant along the same. And indeed these pro- 
perties are immediately obvious from the appearance of the 
system. 

Consequently, if we take any family of surfaces ~ passing 
through the guiding screw-threads, there will always be an 
orthogonal family of surfaces fl, also passing through the 
screw-threads. If the surfaces ~ are the contours drawn at 
equal interv-ds of the potential V the surfaces B are stream- 

H ,  surfaces. And ]_[~ may be nmned the "Chequer Rat io" 

consistently with what has gone before. If V~a is to vanish 
we must have 

O /  H~ x 
~ / ~  X (length of portions of successive screw-threads intercepted} = O. 
u \ ~ bctweeu two stream-lines lying on the same stremn-surfaee) ! 

Since the screw system is uniform the length of the 
portions of successive screw-threads intercepted between two 
stream-lines lying on the same surface fl can be proportional 
to nothing else than the length of one turn of the screw- 
thread at the radius considered. For the two stream-lines 
in question must by symmetry make equal angles with planes 
normal to the axis of the screw, at each pair of points lying 
on the same screw-thread. So that the projection of the 
distance between the said pair of points onto the axis of 
the screw will be always the same fraction of 1 as the points 
move from one screw-thread to another. 

Now the length of an arc ds of a screw-thread being 
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258 Mr.  L.  F .  Richardson on a Free]~and Graphic  way  

the l eng th  of one t u rn  is 

O = 2 1 r  

ds=2~r  + r  e = l l +  l - - r -  ~ 

0=0 

Therefore we may satisfy the equation V~a=0 by making 

H-~ proport ional  to 1 + ~ as the radius varies. A 

table g iv ing  the values of + - - ) v -  for a n u m b e r  of 
r 

Values of )- is annexed .  
t 

r 
- ~  
l 

0 
.05 
"10 

"30 
"40 
"50 
"60 
"70 
"80 
-90 

1"00 

1-5 
2"0 
2'5 
3"0 
3'5 

O0 

1 + 12 

l times this equals are 
of one turn of thread. 

1'0000 
1"0482 
1"1811 
1 '3741 
1"6060 

2'1338 
2'7049 
3"2969 
3'9003 
4'5105 
5"125l 
5"7426 
6"3623 

9"478 
12"606 
15"740 
18"876 
.o2"014 

For standard chart. 

H a . H ~ .  

�9 5507 1"8157 
�9 5639 1"7735 
"5985 1'6707 
�9 6456 1 "5490 
�9 6979 1"4328 

�9 8045 1 "2430 
�9 9058 1"1040 

1 "(~00 1 '0000 
1"0877 "9194 
1"1697 "8550 
1"2468 -8021 
1"3198 "7577 
1"3892 "7199 

14955 "5898 
1"9554 "5114 
2"1850 "4577 
2-3928 "4179 
2-5840 "3870 

i ~ 0 
I 

1 
2~  

equals tangent of angle 
between helix and circle 

~o 

3"1831 
1'5916 
1"0610 
"7958 

"53052 
"B9789 
"31831 
"26526 
'22736 
"19894 
"17684 
"15916 

"10610 
"07958 
"06366 
"05305 
"04547 

I t  is hoped t h a t  these values are correct  to less than 
half  a un i t  in  the last place. 

As there is no surface normal  to the screw-threads, it  is 
not possible to draw s tandard rectangles  of the appropriate  
chequer ratio for each distance from the axis. Bu t  as the 
whole dis t r ibut ion of V is de termined when the section of i t  
by a plane passing through the axis of the screw is known,  
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of determining Stream Lines and Equipotentlals. 259 

we may draw on this plane the sections of tubes formed by 
Ha 

the surfaces a and ~ in such a way that Hs is proportional to 

%/1+ 4~'%'~ 
i s .  

The sections of these tubes will in general not. he rectangles; 
in fact, the angles and ratio of sides of the chequers formed 
by the traces of a and/~ on the plane ~b = constant will both 
now depend on the orientation of the chequer as well as on 
its distance from the axis. I t  will therefore be necessary 
to make a chart of standard chequers in various orientations 
at a number of distances from the axis. Plate XII.  is such 
a chart. The rectangles in the right-hand margin represent 
normal cross sections of the tubes formed by the surfaces 
~t and f~. In a line with each of these are five sections of a 
tube of the same size and shape by the plane of the paper, 
when the angle between one face of the tube and the normal 
to the axis of the screw is successively 0 ~ 22-~ ~ 45 ~ 671 ~ 
90 ~ . In order to be clearly visible these parallelograms are 
drawn quite large. What each really represents is the 
shape of an infinitesimal chequer situated at the central 
point of the large one. Practically the difference will not be 
important. 

Now this standard diagram can be covered by a sheet of 
tracing-paper, and two intersecting families of lines drawn on 
the tracing-paper in such a way that the parallelograms formed 
by them are everywhere similar to the chequers underneath, 
which have the same distance from the axis and the same 
orientation on the paper. Then if this tracing-paper plane 
rotate round the axis and slide along it so as to follow the 
guiding lines, the equipotential lines on the paper will 
sweep out the contours at equal intervals of V in space in 
such a way that X72V =0  and the other family of lines will 
sweep out stream-surfaces. 

A quantity which it is frequently necessary to determine 
is the magnitude of the flux 

Since 
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260 Mr. L. F. Richardson on a Freehand Graphic way 

where A is an absolute constant, we must have 

1 + l ~ 
H---~ = A  Ha 

So that B is a stream function analogous to the forms in use 
when the guiding lines are parallel straights or circles with 
their ccntres on, and their planes normal to, a common axis. 

In types previously studied, when the graph was drawn 
on a surface normal to the guiding lines, H a and H a were 
proportional to the length and breadth of a chequer and 
could be measured directly. But here we must first compare 
the linear dimensions of a freehand chequer with those of 
the standard oblique section of the tube bounded by two 
stream-surfaces and two equipotentlals, and then refer to the 
normal section of the same tube in the right-hand margin of 
the chart. 

The standard chequers were obtained in the following 
manner : -  
Ha ~ f  4 ~r~r~ 

being equal to constant x 1T ~ - ,  some other re- 
H a 
lation is necessary to determine H a and H B separately. The 
relation H a • H B ---- 1 was chosen for this purpose, as this 
gives a neat appearance to the standard chart. I t  was also 

H~ 
found convenient to make the constant such t h a t ~ - = 1  

when ~ =0"5. The values of H~ and H a were calculated 

and are given in the accompanying table. The sides of the 
rectangles in the right-hand margin of the standard chart 
were drawn proportional to 2H~ and 2H~. 

To obtain the slant section, the tangent of the angle 
between the tangent a guiding-line and the plane normal to 
the axis of the screw, was first calculated. It  is equal to 

l 
and is given in the table under that head. The rect- 

2~'r' 
angles were then projected with ruler and compasses in a 
manner which is perhaps sufficiently indicated by fig. 5, 

~vhich shows the construction when / = 0 " 0 5  and the angle 

between a radius from the axis of symmetry and the tangent 
plane to the surface a----constant meeting at the point con- 
sidered is 45 ~ . 
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of determining S t r e a m  L ines  and  Equipote~t ials .  261 

Fig. 5. 

\ 

Of the innumerable solutions of V~V = 0  possessing screw 
symmetry of the sort described, which may be obtained by 
the aid of this standard chart, perhaps the simplest is the 
field due to a helical line source, such for example as the 
distribution of temperature in a mass of electrically insulating 
material which encloses a helical copper wire carrying an 
electric current. To avoid the introduction of a difficulty 
not characteristic of screw symmetry. I have assumed a core 
of non-conducting material in the form of a circular cylinder 
surrounding the axis. This relieves us of the necessity of 
considering the axial line of equilibrium, which would of[act- 
wise have to be treated by an extension of the method in 
Section IV. The external surface of the medium is also 
taken as a circular cylinder and is assumed to be at constant 
temperature. Consistently with our boundary conditions 

we may suppose that d V - o  d~l ~ " :Now symmetry will help us 

in several ways, for since the chequer ratio on the standard 
chart is the same whether any particular half-turn of the 
screw passes over or under the chart, one sees on beginning 
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262 Mr. L. F. Richardson on a Freehand GraThle way 

to make the drawing, that the two surfaces co = const., which 
pass respectively through the electric current and half-way 
between two adjacent turns of the current, must be surfaces 
of flow. Again, very close to the electric current the flow of 
heat will be nearly the same as that due to a straight current 
tangential to the helix, that is to say, the lines of flow will 
be normals to the helix and the isothermals will approximate 
to circular cylinders concentric about the tangent. 

The particular dimensions chosen were ~=0"05 for the 

core, 0"3 for the source, and 0"5 for the outer cylinder. 
Fig. 6. 

"~mO . [ 

O '  

Owing to orientation of the chequer affecting its shape 
this graph took twice or thrice as long to adjust as did the 
others in this paper. Its errors are discussed in Section VIII .  
hereafter. 

The magnetic field due to the helical current may doubt- 

less be determined in a very similar manner. ]=[ere ~-~ will 

be a constant other than zero and the cyclical properties of 
the field will add a further complication. 
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of determining Stream Lines and ~Equipotentials. 263 

IV. 

We have hitherto passed over without mention the pecu- 
liarities relating to points of equilibrium--these are points 
at which the first space-rate of the potential vanishes i~, 
all directions. In the neighbourhood of these the chequers 
become unusually large, and if any chequer goes right up to 
an equilibrium point it will not have the shape characteristic 
of its neighbours, but will take a peculiar form of its own. 

There are several diagrams of this in Maxwell's ' Electricity 
and Magnetism.' See, for example, vol. it. fig. xvii. 

Now if V be expressed in terms of rectangular coordinates 
u and v lying in the plane of the graph with their origin at 
the equilihrimn point, then linear terms in V must vanish, 
and we have 

V = Au  ~ + B~ + Co ~ + Eu 3 + F,t~ + Guy 2 + terms of higher 
degree. 

Now let us make ~7~V vanish. 
For guiding lines parallel straight and normal to the plane 

of the graph 

~V ~V 2(A + C) + ~,(6E + 2G) + ~'(2F + 6H). V~V= ~ + ~-7 = 

When the graph is on a plane passing through "m axis about 
which there is symmetry of revolution and u is normal to 
this axis, we must add to the above value of V~V the term 

I ~V u ~_ 
= 2 ~ A +  L B + 3 - - E ,  

' / '  ~ ' tr  "/" 'P 'P 

where r is distance from the axis. 
Now when the point considered is not on or close to the 

axis, it will be possible to put in so many chequers that the 
first two chequers in any direction from the equilibrium 
point require for their measurement so small a range of u 

andv that the fractions ~r v, &c., ,viii be small, and therefore 

the additional terms which come in for symmetry about an 
axis may be neglected, and we have the same form for U~V 
in both cases. 

Further, since Mercator's projection does not alter the 
shape of any small pieces, ~7~V will have the same form in 
the-neighbourhood of an equilibrimn point on the Mercator's 
plan of the distribution on a sphere. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 1
6:

18
 1

2 
Ju

ne
 2

01
6 



264 Mr. L. F. Richardson on a .Freehand Graph ic  w a y  

This being so, the general form of V in all three cases is 

u = a(u  2 - v ~ ) + b .  uv + g (u  3 - -  3uv 2) + h(v 3 - -  3u:v)  + higher terms, 

where a, b, g, and h are arbitrary constants. When the 
ratios of a and b to the succeeding coefficients do not vanish, 
then the first two terms are all that we need consider. Now 
it may easily be shown that by a proper rotation of the axes 
of reference, so that u v tranform to ulvl, the sum of these 
two terms may be transformed into either of them separately. 
We need therefore only consider one, say btqvl. The con- 
tours of this function are hyperbolas and are orthogonal to 

a 
those of a(u l  2 -  vl~). The ratio ~ is determined by the chequer 

ratio in the neighbourhood of the equilibrium point. 
A graph of this function for the special case of unit 

chequer ratio is given in Webster's ' Dynamics,' p. 525, and 
shows that two equipotentials meet at right angles at the 
equilibrium point, and that two stream-lines also pass through 
the same point and bisect the angles between the equi- 
potentials. The eighL curved chequers which meet in the point 
each have consequently three corners of 90 ~ and one of 45 ~ . 
A graph of this function may be used as a " standard equili- 
brium point"  to keep the eye informed of the necessary 
proportions of the first and second ring of chequers sur- 
rounding the point. 

If, however, the coefficients a and b vanish, while g and h 
do not, then the terms of the 3rd degree become all 
important. 

By rotating the axes the sum of the two terms of the 3rd 
degree may be reduced to either separately. A rough graph 
of the contours of these functions is given by Fiske in 
Merriman & Woodward's 'Higher  Mathematics,' p. 248. 
Here three equipotentials intersect in the equilibrium point. 
And three stream-lines bisect the angles of 60 ~ which are 
formed in this way. 

Now when a graph has to be drawn and is found to contain 
an equilibrium point, the general arrangement of the potential 
will give us the clue as to whether two, three, or more equi- 
potentials intersect in the equilibrium point. And this being 
known, we have only to draw in the standard type at the 
proper dimensions and chequer ratio. 

When the graph is drawn on a plane passino_" through an 
axis about which there is screw symlnetry of the sort described 
in Section I I I  c, then the appearance is different, for we 
have to add to the value of V:V for circular symmetry about 
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of dete)'mlning &ream Lines and 2E'qui2)otentials. 

an axis the term 

I ~ 5~V 
47r,~r.o - 3v~ 

And therefore writing 

265 

s --4. ,~(2C+2uG+6vH).  

12 
1 + ~.2~ = R z 

we have  

v = a(R~.'- '- v~) + ~ . , . .  + ~/(a~. 3 - a , ~  ~) + h(~3-  3 ~ , ) .  

A simpler w~y of looldng at tile matter is to consider a tiny 
plane element normal to tile guiding screw which forms the 
line of equilibrium. The normals to the surfaces oJ=const, 
lie in this plane. If dS~ distance along such a normal, then 

Substituting this in the expression of ~7~V in terms of /' and 
o we have 

U W - b " V  1 3 V  b2V _ ~ - + -  + 

just as if S~ was z in circular symmetry about an axis. 
From this we see that the appearance of the equilibrium 
point on a small plane element normal to the guiding screw 
will be exactly similar to the forms already dealt with. Its 
appearance on a plane which passes through the axis of the 
screw may be sketched without much difficulty by comparing 
the chequers in the right-hand margin of the standard chart 
with their projections as drawn in the middle of the chart. 

V. Equations otlter than Laplace's. 

It  has been shown above that in order to solve the equatiou 

5 W  ~ V  + any given function of V, x, y, ~.~ ~-~---- 

a relation between differences of chequer ratios has to be 
satisfied. And tile same will be found to be true for the 
other forms of the equation V~V = a function (of V and of 
position) which can be treated by two coordinates. A 
difference relation of the sort referred to would involve the 
comparison of each chequer with a standard set having 
graded chequer ratios, followed by the calculation of V~V by 
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266 Mr. L. F. Richardson on a _Freehand Graphic way 

arithmetic. And although it would doubtless be possible to 
carry out the necessary operations, yet it would almost cer- 
tainly be quickerand more accurate to use.arithmetical finite 
differences altogether, writing in the numerical values of V 
at a set of points on the paper and adjusting these numbers 
until the finite difference equation is satisfied,--in a manner 
which may be described in a future paper. In view of this 
I will not attempt to elaborate freehand methods for ~TW---- 
a given function of V and of position. 

There ar% however, certain common space distributions 
which may be treated graphically with simplicity although 
they do not satisfy ~72V=0. 

Firstly, when the co~ductivity is a eo~ztiuuous /:unction of 
position, and the direction of the flux is normal to t~e contours 
of a potential, and the magnitude of the flux is the maximum 
space-rate of the potential multiplied by the conductivity, 
and the flux has no divergence. For example : the flow of 
heat and electricity in isotropic but non-homogeneous bodies, 
or the soakage of water in a satura~d subsoil the upper 
layers of which are more porous than those below. Let K 
be the conductivity and suppose that it is constant along each 
guiding line but varies from one such line to another. 
Then, when the lines have a family of surfaces normal to 
them we must have 

[H~.  H~. K)  
=0 

in order that th~ flux shall not diverge. This is very easily 
assured by preparing the paper with standard chequers 

H~ 
having their chequer ratio ~ proportional to H~. K. In 

fact, we have an example of this in Section I I I a  above; 
for circular symmetry about an axis may be regarded for 
this purpose as flow between parallel planes in a medium 
having conductivity directly proportional to the distance 
from the axis. And reciprocally. 

Similarly in the case of screw symmetry, standard chequers 
are to be prepared having 

~ / / 1  4~r~r' tt_~ proportional to K -~ l~ " Ha 

Two other cases can probably be treated freehand, namely, 
the flow of heat in bodies where the conductivity varies with tile 
temperature, and, of great practical importance, the distribution 
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of determining Stream Lines and Equilootentials. 267 

of magnetic induction in soft iron, taking into account the 
variation of the permeability with the force. But these again 
will be left to those who need the results. 

VI..Note on Boundary Conditions. 

It  may be convenient to the reader if we bring together 
certain well-known facts concerning boundary conditions. 

Let~ us regard V simply us a function of posit~ion, no~ 
necessarily satisfying ~72V~---0 or any other equation; and, 
as always, let contours be drawn at small intervals of V each 
equal to k. Then the first space-rate of V in any direction 
at a point is inversely as the intercept cut off from a line in 
that direction by two contours of u one on each side of the 
point, and is directly as K. Suppose, further, that the whole 
distribution of V can be represented by a single graph. 

1. I f  we have to make V such that the magnitude and 
direction of its maximum first space-rate, the I-Iamilfonian 
vector ~TV~ satisfies given values over a boundary of a given 
shape. Then it is easy to set off the ends of the contours of 
u with a ruler and scale, for their directions are known and 
also the disL~nea apart of successive pairs. 

2. I f  we are not given VV over tile boundary but only 
the first space-rate of V in a given direction. Then there are 
an indefinite number of ways in which the contours of V may 
cut the boundary ; and as it will not generally be possible to 
say which of these is consistent with the internal conditions, 
they must be drawn and modified freehand as the approxi- 
mation to the internal conditions proceeds. This is usually 
not difficult. 

3. To make V continuous at any surface cutting the distri- 
bution, all that is necessary is that the ends of the contours 
of V approaching from the two sides should meet one 
another at this surface. Whether they meet at an angle or 
no~ does no~ m~t~er. 

4. To make the first space-rates of V in every direction con- 
tinuous at any surface where V is 'continuous, not only must 
the contours of V meet one another, but they must pass 
smoothly into one another without making an angle. For if 
they made an angle and a straight line were drawn tangent 
to one branch of the contours at the angle, then the ratio of 
successive intercepts of this line by the contours of V would 
not become unity when the contours were drawn at indefi- 
nitely small intervals of V, so that the second space-rate along 
this straight would be indefinite at the angle. 

5. Suppose next that a non-divergent vector is normal to 
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268 Mr. L. F. Richardson on a Freehand Graphic way 

the surfaces V=const. ,  and that the magnitude of the vector 
is equal to the space-rate of V along the said normal, 
multiplied by a scalar function of position ; which according 
to the particular application will be the conductivity, perme- 
ability o1" some other specific constant. Then we may require 
the conditions which must hold at a boundary where the 
specific constant has a discontinuity while V is continuous--as, 
for example, where magnetic flux passes from air into mild 
steel. These conditions, which I take from Prof. J.  J .  
Thomson's ' Elements of Electricity and Magnetism,' may be 
stated thus : - - I f  K1, K~ are the aforesaid specific constants 
on the two sides of" the boundary, and 81 and 82 are the 
corresponding angles which the direction of the vector makes 
with the bounding surface, then 

~ tan  81 ----- 1 K2 tan 85. 
Now if the graph be drawn on a surface which is normal 

to the guiding lines, the direction of the vector lies in the 
graph, and 61 and g, are the actual angles which one sees. 
The same is true of the Mercator's map of a spherical surface 
distribution, since the angles are unchanged by projection. 
But with our method for screw symmetry, the angles 81 and 
8~ do not immediately appear, and comparison mus~ be made 
with the angles of the slant sections of the rectangular tubes 
given on the standard chart. 

VII.  ~lllscellaaeous Notes on Draughtsmanship. 
(a) Since with the exception of given boundaries and lines 

deduced from symmetry no part of the field can be said to be 
correct until the whole field is correct, it is advisable to begin 
by covering the whole field with intersecting lines~ however 
erroneous they may be, and then to carry out amendments 
over wide areas at one time. 

(b) In the final stages of a drawing intended improvements 
often overshoot the mark or cause unforeseen disturbances in 
the surrounding chequers. It  seems well, therefore, to lay 
aside the indiarubber after a certain accuracy has been 
reached, and, placing a sheet of tracing-paper over the rough 
diagram, to draw the intended improvements upon this. 
And so with all later stages. The tracing-paper diagrams 
are then compared with one another and the best selected. 

(c) The graphic addition of two scalar functions of position 
is conveniently performed in the way described by Maxwell 

�9 . . , �9 

( Elementary Treatise on Electrmlty ) by laying the contours 
drawn on a sheet of tracing-paper at equal intervals of the 
one over those of the other, covering the two with a clean 
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of determlning Stream Lines and Equit)otentials. 269 

sheet of tracing-paper, and drawing the diagonals of the 
chequers formed by the intersecting contours. 

VIII .  Estimation o) c Errors. 
To one reading an account of this freehand method without 

having worked an example, it might seem as if there were no 
way of setting a limit to the errors of any particular graph. 
This, if it were true, would be a serious fault. But, happily, 
it is not so; for it is commonly necessary to make several 
drawings and then select the best of them : so that by the 
time the draughtsman has reached a drawing which he can 
scarcely improve upon, he has before him deviations from it 
in divers directions. The difference, then, between the 
selected graph and the second best graphs is a measure of 
the errors of the latter and an outside limit to the errors of 
the former. The actual errors of the selected graph will be 
less than this limit, and may be estimated by comparing the 
errors in the shape of the individual chequers in the best and 
second best graphs, and taking a fraction, thus : - -  
indivldual chequer citer in best graph /difference between best and~ 

s ~ e  in ~ e o ~ g r a p - h -  \ second best graphs I " 
This is the true measure of the errors of the best graph. 

I t  depends, of course, on a general mental estimate or appreci- 
ation, and is consequently not susceptible of exact definition. 
But this does not much matter, for if the value of an error 
be known within two times either way it is usually sufficient. 

The difference between the best and second best graphs is 
less dependent on a mental estimate, and consequently sets a 
firmer limit to the possible error. 

Talcing, for example, the graph of the field round a helical 
line source given in section III .  c, and laying over it the 
tracing of the unpublished second-best graph, one sees that 
the difference in position of the lines in the two graphs 
nowhere exceeds -~ the linear dimension of the chequer, at the 
point and in the direction considered. Now I should estimate 
that the error of the shape of individual chequers in the 
published graph averaged ~ of the same quantity in the other ; 
so that �88 of the linear dimensions of the chequer may be taken 
as the error of position of the lines in the published graph. 
~ow the graph exhibits ten tubes of flow ; so that �88 of one 
tube is 2~ per cent of the range. This is in the worst parts 
of the field. Elsewhere the error will be less, but it may 
still be expected to exceed the errors found when the graph 
is drawn on a surface normal to the guiding lines, because in 
the case of screw symmetry we have the added difflcultv that 
the shape of the chequers depend upon its orientation. " 

_Phil. Mag. S. 6. Vol. 15. INo. 86..Feb. 1908. U 
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I~ICttARDSOI~. 
S T A N D A R D  CHART FOR S C R E W  SYMMETRY.  

Thil. Mag. Ser. 6, u 15,. P1, XII. 
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